dBASE IV*

Version 2.0

Language Reference

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.0. BOX 660001, SCOTTS VALLEY, CA 95067-0001

Copyright © 1984, 1993 by Borland International. All Rights Reserved. All
Borland products are trademarks or registered trademarks of Borland
International, Inc. Other brand and product names are trademarks or
registered trademarks of their respective holders.

PRINTED IN IRELAND
10987654321

Contents

Introduction 1
Chapter 1: Essentials i i 1
Chapter 2: Commands e 1
Chapter 3: SETCommandsc.ouiuiin e 1
Chapter 4: FUnCtions it 2
Chapter 5: System Memory Variables.ooouiree . 2
Chapter 6: SQL Commands.oiiiue 2
Chapter 7: SQL Catalogsouui i 2
APPENdIXES 2
Essentials............................... 3
Chapter 1, Essentials......................... 5
About This Chapter i 5
dBASE IV Language COmpOnents.ouuuuuennn i, 5
Dot Prompt Interface 6
SQL Prompt Interface.o 7
Filenames and Aliases o i 8
Programs and Procedures 11
Using Commands.t 13
SYNtAX . . .o 13
EXPressions. 15
Data Typeso 16
OPEratorsot 18
Precedence of Operators. i 19
Using SET Commands, 20
Using Functions o 20
User-Defined Functions. o i 21
Whatisa UDF? 21
Example of aUDF 22
Limitations on UDFs 23
Using System Memory Variables 24

Commands ... 27

Chapter 2, Commands.....................cciiiiiiiiiiiiiiai ., 29
L e e e e 29
22 O 33
@ . o e e e e 37

Format FUNCHONS oot ottt et e et ettt et 41
@ .. CLE AR .. e e 46
@ . FILL . ..ot e e 47
@ .. SCROLL ..ottt e e e e e 48
@ ... TO oot e 49
ACCEPT ..ttt e e 51
ACTIVATE MENU . .. oottt e e e e e et et e e 52
ACTIVATE POPUP . ..ottt e e e e e e e aae s 53
ACTIVATE SCREEN . . .ottt e e e e e et e c e 53
ACTIVATE WINDOW . . oottt e et ettt e e e aae e 54
APPEND . ..ottt e e 55
APPEND FROM . ..ottt e e et e e e e e e 56
APPEND FROM ARRAY .. i i et as 59
APPEND MEMO . ..ottt e e e et e et i it 61
ASSIST . oo e e e e e 62
AVERAGE . .. e e e 63
BEGIN/END TRANSACTIONttt i 64
BLANK . oo e e e 68
BROWSE . .. oottt et e e e e 70
CALCULATE . o oot e e e e et e e et e e 75
CALL . . .ttt e e e e e e s 77
CANCEL . ..ot e e e e e e e e 78
CHANGE . . . oo e e e e e e e s 79
CLE AR . .o e e e 80
CLOSE . . oot e e 81
COMBPILE . ..ottt e e e e e e s 82
CONTINUE . . .ottt e e e e e e e et e et et e st 86
(000107 21 23 I 87
COPY . . e e e e s 88
(000)22°40 1 1 = S 91
(00022 111 5) 25 € =503 U 92
COPY MEMO . . oot e e e e e e e e e e e e 93
COPY STRUCTURE . .. it e e e e e et 94
COPY STRUCTUREEXTENDEDt i 95
COPY TAG . .ottt e e e e e e e e i i 96
COPY TO ARRAY .o oottt e e e e e e e e e et 97
COUNT . o e e e e e e e e e e e e e e e 99
CREATE or MODIFY STRUCTURE e 100

CREATE/MODIFY APPLICATIONt 104
CREATE/MODIFY LABELottt 106
CREATE/MODIFY QUERY VIEW.o, 107
CREATE/MODIFY REPORT.ttt 109
CREATE/MODIFY SCREEN.t 111
CREATE VIEW FROM ENVIRONMENTo, 113
DEACTIVATEMENU e 114
DEACTIVATEPOPUP. e 115
DEACTIVATE WINDOW e 116
DEBUG 117
DECLARE. 119
DEFINE BAR 122
DEFINE BOX e 123
DEFINEMENU 125
DEFINE PAD 127
DEFINEPOPUP e 129
DEFINE WINDOW e 130
DELETE 132
DELETEFILE. e e 133
DELETETAG e e e e e 133
DEXPORT 134
DR L 135
DISP LAY 136
DO . 137
DO CASE/ENDCASEttt 141
DO WHILE/ENDDO. oo 142
BDIT 144
BIECT .. 147
EIECTPAGE 147
BRASE. . 148
EXPORT 149
FIND .. 150
FUNCTION 153
GO/GOTO e e e 157
HELP .. 159
IFENDIF 160
IMPORT ... 161
INDEX . oo 162
INPUT . 168
INSERT . .. 169
JOIN . L 170
KEYBOARD 172
LABEL FORM 174

LIST/DISPLAY . .ottt et et et e e e e 175

LIST/DISPLAY FILESo e e e 177
LIST/DISPLAY HISTORYottt es 178
LIST/DISPLAY MEMORYt 178
LIST/DISPLAY STATUS . . .ot e e ees 181
LIST/DISPLAY STRUCTURE. e ae 182
LIST/DISPLAY USERS . . .ot e e es 184
LOAD . .ot i et e 184
LOCATE . ot e e e e 188
LOGOUT . ..ottt e e e e e e 190
MODIFY COMMAND/FILEo e ees 190
MOVE WINDOW . ..ottt e 192
NOTE . . ottt e e e 193
ON BAR .ot e 193
ON ERROR/ESCAPE/KEY i i 195
ON EXIT BAR .. ittt e et 199
ON EXIT MENUt e i 201
ON EXIT PAD ..ottt e e it 203
ON EXIT POPUP . .. ittt e e e e i e 204
ON MENU . . .ot e e e 206
ON MOUSE ..ottt e e e e et et e e 207
ON PAD . . ittt e e e 208
ON PAGE . .. e e e 209
ON POPUP ...ttt e e e e e e 212
ON READERRORt e 213
ONSELECTION BARttt e e 214
ON SELECTION MENUttt 215
ONSELECTION PADttt e it 216
ONSELECTION POPUPottt 217
PACK . ottt e 219
PARAMETERS . .. o e 219
PLAY MACRO . . oottt e 220
PRINTJOB/ENDPRINTIOB.o 222
PRIVATE ... e e 224
PROCEDUREttt e ettt 224
PROTECT ...ttt e ettt e e 227
PUBLICttt e e e 231
QUIT .. o 232
READ .. e 233
RECALL ..ottt e e et e 234
REIND E X . .ottt et e e e et e 235
RELEASE . . e 236
RENAME .. e e e 238
REPLACE . . e e e e 239

REPLACEFROM ARRAY i 241

REPORT FORM 242
RESET .. 244
RESTORE 245
RESTOREMACROS i 246
RESTORE SCREEN i 247
RESTORE WINDOW, 247
RESUME 248
RETRY . 248
RETURN . . 249
ROLLBACK ... 250
RUN . 251
SAVE . 252
SAVEMACROS 253
SAVESCREEN. 254
SAVEWINDOW ... 255
SCAN/ENDSCAN e 256
SEEK . . 257
SELECT 258
SHOW MENU 260
SHOWPOPUP 260
SKIP . 261
SORT . ..o 262
STORE. . .. 265
SUM . 267
SUSPEND 268
TEXT/ENDTEXT . ..o e 269
TOTAL ... 270
T PE . 272
UNLOCK . . . e 273
UPDATE 274
USE .. 275
WAL . 279
ZAP 280
SET Commands SO 281
Chapter 3, SET Commands 283
SET 283
SET ALTERNATE e 284
SET AUTOSAVE 286
SETBELL e 286
SETBLOCKSIZE e 287

SET BORDERttt e e 288

SET CARRY .ottt i e e 290
SET CATALOG ...ttt ettt e e ettt et 291
SET CENTURY ..ttt e e it ittt e i e e 294
SET CLOCK .ottt e e e e e e e 295
L =i 00 10) 296
SET CONFIRMottt et e e e e e e 304
SET CONSOLE . . . ittt ettt e e e e 305
SET CURRENCY ..ttt et et et et e 305
SET CURRENCY LEFT/RIGHT i 306
SET CURSOR . . oottt e e e i 307
SET DATE . . . oottt et e e e e e e e e 308
SET DB TR AP . ..ottt e e s 309
SET DEBUG . .o\ttt ittt e e e et et e e 311
SET DECIMALS . . .ttt et et e e e it 311
SET DEFAULTttt ettt e et e e eaas 312
SET DELETED . ..ottt e e ettt e e 313
SET DELIMITERSottt ettt eas 314
SET DESIGN ..ottt e e e i e 316
SET DEVELOPMENT ittt e e 316
SET DEVICE ..ottt ettt e e e 317
SET DIRECTORY ..ttt et e e 318
SET DISPL AY ..ttt ittt e 319
L) 2 B 2701 5 (© TN O T 320
SET ENCRYPTION ..ottt i e et ees 321
SET ESCAPE . ..ottt e e e e 322
SET EXACT ..ottt e e e 322
SET EXCLUSIVE . .ot e e e 324
SET FIELDS . . ittt ettt e et ettt e 324
SET FILTER .. .ottt e e e e ittt 328
SET FORMAT . . oottt et e e e i 329
SET FULLPATH . . .ot e e 331
SET FUNCTION . . .ttt ettt e iae e 332
SET HEADINGS . . . ottt e e et 333
SET HEL P . . .ottt e e e 334
SET HISTORY ...\ttt e 335
SET HOURS . .ottt e e et et e et 336
SET IBLOCK ..ottt e e e e e et 337
SET INDE X . . ottt ettt et et e e 339
SET INSTRUCT ...ttt e e e e e it 341
SET INTENSITY ottt e et 342
SET KEY . oottt et e e e 343
SETLDCHECK . ..ttt et 344
SET LIBRARY ..\ttt et et e e e 345

SETMARGIN 349
SETMARK ... 350
SETMBLOCK ... e e 351
SETMEMOWIDTHooii i 352
SETMESSAGE. 353
SETMOUSE. 354
SETNEAR ... 354
SETODOMETER, 356
SETORDER 356
SET PATH. 358
SETPAUSE. 359
SET POINT 360
SETPRECISION. 360
SETPRINTER. 361
SETPROCEDURE i, 364
SETREFRESHo 366
SETRELATION 367
SETREPROCESS, 371
SET SAFETY ...t e 371
SETSCOREBOARDoiuiiiii e 372
SET SEPARATOR 373
SET SKIP. . ..o 374
SET SPACE. 376
SET SQL .. 376
SET STATUS . ..o 377
SETSTEPo 378
SETTALK. ... e 378
SETTITLE e e e 379
SETTRAP . .. 380
SETTYPEAHEAD 381
SETUNIQUE i 381
SET VIEW . ..o e 383
SETWINDOW ... e 384
Functions 387
Chapter 4, Fumctions 389
& 389
ABS() . 390
ACCESS() . .ot 391
ACOSQ) oo 393
ALIASQ . .o 394

Vii

...................... 395
ASING 5
ATO L. 96
ATANO o 7
ATN) oo 7
BAR(Lo 98
BARCOUNTI(. ..o o
BARPROMPT() R b
BOFQ . oo o
CALLO .o o
CATALOGO ..o ot
CDOWO oo 405
CEILINGO .. 05
CERROR(. ... 406
CHANGE(- o
CHRO . oo o8
CMONTHO .. e
COLO. 2oL a
COMPLETED(. ... oo 2
COS0. a2
CTOD(.o a3
DATE(oo e
DAY() .o s
DBFQ. .o i
DELETED(. 1. 7
DESCENDING(..o ae
DGENQ ..+ 49
DIFFERENCE(... p
DISKSPACE()...: !
DMY() - ot
DOW oo 2
DTOCO .o b
DTOR) .o 2
DTOS(.o o
BOFQ. s a5
ERROR() .o 420
EXPO .. oo)
FCLOSEQ ..o a8
FCREATE(. ..o i
FDATE(..o e
FEOF(. ..o 1
FERROR(. ..ot 42
FFLUSHO ..o 43
FGETS() . v v v e e e e e e e

viii

.................. 436
FIXEDG o
PKLABEL, || o
FRMAXG P
FLDCOUNTG, e
FLDLISTO | o
FLDLIST() "
FLOCKQ | ps
FLOORG || |11 pos
FOPENG, |1 .
FORG L P
FOURD . | po
FPUTS(o
FREADY, | P
BSBEKG, | s pos
BSIZEG o
FSIZE() s
PV o
PWRITEG -
GETENVO, ol
HOMB(1 -
Dy poas
I | ol
INKBYQ L ol
INTO L o
SALPHAG || -
SBLANKG |)y
ISCOLORG, | o
SLOWBRG .| o
ISMARKEDG il
SMOUSE(1 -
SUPPERG L o
KEY(| e
KEYMATCH, | -
KEYMATCH() poly
LASTKEY() Pk
LENG o
LIREG, pibi
LINENOG | pibs
LRSYSO pibd
LOCK() bl
LOGO . L piks
LOGI0G | s
LOGIOO . .vvoii

......................... 481
LOOKUP() ettt i es

..................... 482
LOWER(oo e
LTRIMO oo e
LUPDATEQ) . ©ovveenn.. e ©
MAX() s 8
MCOLO - 486
MDX() 5
MDY() 7
MEMLINES() i
MEMORY(). o e
MENUQ . .« oo e 90
MESSAGE(oo ol
MINO o 1
MLINBQ s 2
MOD(1 93
MONTHQ) ©evveeeennnns s e
MROWO) e oo I LTI o
NDX() 96
NETWORK(- 7
ORDER() 98
OS0) 1 499
PAD(. 111 99
PADPROMPT(. ..o 300
PAYMENT() s o
PCOLO 1. 0
PCOUNTO. o 0
IO .4 0
POPUP() ..o, e o
PRINTSTATUS() ..o 0
PROGRAM(}...........................‘................ 306
PROMPT(). .o 306
PROW() o 07
PV 10 08
RANDO 0
RATO. 1o 310
READKEY((oo n
RECCOUNT(. .o e
RECNO(o n
RECSIZB) ..o e
REPLICATE(.ot i
RIGHT() e e
RLOCK(1. o 316
ROLLBACK(oo 3
ROUND() . e et e e e e e e

ROW () . 519

RTOD() .. oo 519
RTRIM() . oottt e e e e e e e e e e e 520
RUNQ .o 521
SEEK (). ..ot 523
SELECT() .« . vttt et e e ettt e e e e e e e e e e e e e 525
SET () . ottt 526
SIGN Q) . oo 530
SIN () oo 531
SOUNDEX() © .« vttt ittt ettt e e et e 531
SPACE() .. it 533
SQRT () i 533
STR() . oot e 534
STUFRE() . . oot e e e e 535
SUBSTR() . .o oottt e 536
TAGQO .o e 537
TAGCOUNT() . . oo oeee ittt e e e 537
TAGNO(). . .o 538
TANQ .o 540
TIMEQ . ..o 541
TRANSFORMO)o 541
TRIMOQ) . . oo 542
TYPEQ) . .. 543
UNIQUE() . . . oo ii et e e e e e e e e e e e 544
UPPER() ..ottt e 545
USER() .. oiit ittt 547
VAL ot 547
VARREAD() . . .o oo e 548
VERSION() . . oot e 549
WINDOW() . . oottt 550
YEARQ - .o 550
System Memory Variables. 553
Chapter 5, System Memory Variables. 555
CaliNment 555
BOX o e e e 556
ANAENt . . 557
Imargin. e 558
_PAAVANCE . ..o e 559
CPABEIIO oo e 561
PODAgE . o e 562
PCOINO . oo 564

PCOPIES & o e ettt e e e e e e e e 565

PALIVEL . o e 566
PECOAE . .\ttt 568
B o112 569
CPEPAGE . o i e e 570
o) ()& 11 571
B o) =5 .41 A 572
CPHNENO . o e 573
N o) o) £ A 574
PDItCh L 575
PQUALItY . . 576
PSCOAE . 577
PSPACITIE . o . ettt e e 578
CPWAIL e 579
01 0F:1 ¢4 11 PR 580
L7101 A 582
WIAD .« o ettt e e et e e e e e e e e e e e e e e 583
SAL Commands ... 585
Chapter 6, SQL Commands.................... ... 0.0 iiiiiinnnnin.. 587
Symbols and Conventionsttt e 587
Reserved Wordsot e 588
Classes of Commandsoiuiiiitit i et 589
Creation/Start-up of SQL Databasesoiiiiiiiiiiiineennnn... 589
Creation/Modification of Objects. 589
Database SeCurityttt 589
Data Definition e 590
Deletion of ObjJectsot . 590
Embedded SQL 591
Queryand Updateof Data i, 591
Uty o 591
ALTER TABLE. . .. e e e e 592
CLOSE . . 594
CREATE DATABASE . .. o e e e 596
CREATE INDEX e e e 598
CREATE SYNONYM. . .o e e 600
CREATE TABLE e e e 602
CREATE VIEW . e e e e e 605
DBCHECK ... 609
DBDEFINE . . e 610
DECLARE CURSOR ... e e e 612
DELETE .. 615

Xii

DROP DATABASE ... e 618

DROPINDEX e i e 619
DROP SYNONYM ... e e 620
DROP TABLEttt e e e e e i 620
DROP VIEW . . e e e 621
FETCH. ... e 622
GRANT .. 624
INSERT . . e 627
LOAD DAT A . e 630
OPEN . . 633
REVOKE . . .o e e e 634
ROLLBACK . ..ttt e e e et 637
RUN S T AT S . . o e e i i 638
SELECT . . oot e e e e 639
SHOW DATABASE . .. oo e e e 656
START DATABASE . .. o e 657
STOP DATABASEo e e 658
UNLOAD DATA ... e i et 659
UPDATE . . oo e e 661
SQL Catalogs........................... ... 665
Chapter 7, SQL Catalogs i, 667
Updating the Catalog Tablesttt i i 668
Description of Catalog Tablest 670
Sysauth Table e 670
Syscolau Table o e 671
Syscols Tablet e 671
Sysdbs Table. 672
Sysidxs Tableo e 673

Sy KOS . o et 673
Syssyns Table 674
Systabls Table.ot e 674
Systimes Table 675
Sysvdeps Table e 675
Sysviews Tableottt e 675
AppendiXes. ... 677
Appendix A, dBASE IV Specifications........................... ..., 679
Database File P 679
Index Fleot e 679

Xiii

Field Sizes . oot 679

ATTAYS .ottt 679
Multi-User Procedures. e 680
File Operations.o oit ittt ettt e et e e et e e 680
NUMETIC ACCUTACY . . . o v ottt et ettt e e et ettt e e et e e 680
Memory Variables e 680
Compile-Time Symbols.ot e 681
CapaCItieS . . . oottt e 681
Word Wrap Editor e 681
Forms e 681
Reports e 681
Labels . .o e 681
QBE .o 682
SO o 682
Applications Generator.ttt 682
Miscellaneous Capacitiesttt e e 682
Appendix B, Sample Files 683
Client.dbf e 683
Transact.dbf e 685
Stock.dbf ... e 687
A (5 11 T8 o) S 688
Appendix G, File Extensions 691
File Extensions Used by dBASE IV e 691
File Relations and Compatibilities.ottt 694
Appendix D, Structure of a Database (.dbf) File.................. 695
Database Header and Records i i 695
Database Header Structureottt et 695
Database Records i e 696
Memo Fieldsand the .dbt File e 697
Appendix E, ASCH Chart... e 699
Appendix F, dBASE Commands and Functions Allowed inSQLMode 705
dBASE Commands Allowedin SQLMode iiiiiiniiiniaennn.. 705
dBASE Functions Allowed in SQLMode.ttt 707
Appendix G, dBASE Error Messagest 709
Unrecoverable EITOrs.o e 709
EITOr MESSAZES . . o v vttt ittt e e et e e e e e e e e e 709
Inde X .. 771

Xiv

Introduction

The Language Reference is an encyclopedia of dBASE IV® commands, functions, and
system memory variables. This manual is for users who have completed Getting
Started or Using dBASE IV. If you are already familiar with dBASE® programming or
are using the dBASE Compiler for DOS, you will find this manual a useful reference
tool.

Chapter 1: Essentials

This is a discussion of the dBASE IV basics: using commands, SET commands,
functions, and system memory variables. It covers dBASE IV language components
and shows you how to use them to build a command line.

Chapter 2: Commands

This chapter provides an alphabetical listing of the commands you can use in

dBASE IV. Each entry contains a basic syntax paradigm and notes on how to use the
command. Many commands also contain tips, examples, and cross references to other
commands and functions. The database and index files used in the examples are listed
in Appendix B, “Sample Files.” Also in Appendix B is a complete listing of
Menus.prg, a program from which several examples in this chapter are taken.

Chapter 3: SET Commands

These are a subset of dBASE IV commands, listed in alphabetical order. SET
commands allow certain settings that control how dBASE IV presents information
on the screen or printer, or that establish an environment affecting the way other
commands and functions operate.

Introduction 1

Chapter 4: Functions

Chapter 4 contains an alphabetical list of the dBASE IV functions. Each function is
thoroughly described, and includes a definition, syntax, usage, examples, and any tips
that make it easier for you to use.

Chapter 5: System Memory Variables

System memory variables are a class of memory variables that dBASE IV reserves to
hold information about printing and the format of printed material. This chapter
contains information about tailoring your printing tasks by changing the values of
these variables.

Chapter 6: SOL Commands

This chapter provides syntax, descriptions, and examples for each SQL command.

Chapter 7: SQL Catalogs

This chapter describes SQL catalog tables.

Appendixes

The appendixes cover the following topics:

dBASE IV technical specifications
The sample files that are used for all examples in this manual

A summary of the types of files that dBASE IV uses and creates, and the file
extensions that are written to disk when these files are saved

Notes on the structure of a database (.dbf) file

The ASCII chart, which provides hexadecimal and decimal equivalents for each
characters

dBASE IV commands and functions that can be used with SQL

dBASE IV error messages, their numbers, and appropriate corrective actions

Language Reference

Language Reference

Essentials

About This Chapter

In this chapter you will find the basic essentials needed to construct a dBASE IV
command line. A command line is a complete instruction that directs the dBASE IV
processor to act on data items, and may contain a command (or SET command),
functions, and system memory variables. You can find further information on each
of these, respectively, in Chapters 2, 3, 4, and 5.

You may enter a command line at the dot prompt, or as part of a program.

dBASE IV Language Components
Each language component has a role in the command line:
s Commands are verbs that direct the dBASE® processor to perform a certain action.
Although a command line may optionally contain another language component, it

must contain one (and only one) command. Sometimes the command verb is
implied in the command line, as with the STORE command. The command lines:

. STORE 5 T0 x
and
. x=5

are the same, but the STORE command is implied in the second form.

Because each command line must contain a command verb, the term command
line is often simply referred to as the command.

a SET commands are a subset of commands that usually set up the environment in
which the processor acts. For example, SET DATE sets the default date format.

s Functions work in several ways:
1. Some functions, like PI(), always return a constant value.

2. Some functions are adjectives or adverbs that modify a data item. For example,
LOWER() converts uppercase letters to lowercase.

Chapter 1, Essentials 5

3. Other functions hold a dBASE IV value or condition that you can query. The
function EOFY) is set to true (.T.) when you are at the end of a database file,
and the command:

. 2 EOF()

returns

4. Some functions are formulas that are evaluated with respect to the input
parameters. For example, SQRT(x) returns the square root of the input
parameter x.

5. Other functions, like LOOKUP(), SEEK(), RLOCK(), and FLOCK(), perform
an action and return a value.

m System memory variables are settings that control the appearance of printed and
screen output. While commands, SET commands, and functions were language
components in earlier versions of dBASE I11®, dBASE I11®, and dBASE I1I PLUS?,
system memory variables are new to dBASE IV.

System memory variables are like SET commands in that they usually control
system parameters rather than act on data items. They are like functions in that you
can query the values they contain. They are like memory variables in that they can
be public or private.

In this manual, commands are printed in uppercase, such as LIST. SET commands are
also uppercase, and always begin with the word SET, such as SET DEVICE.
Functions are also printed in uppercase, but end with parentheses, such as FOUND().
System memory variables are lowercase, and begin with an underscore, such as
_padvance. These conventions help you distinguish among the terms; for example,
CHANGEY() is a function, but CHANGE is a command.

Dot Prompt Interface

The interactive mode of dBASE IV, which allows you to enter a command line and get
an immediate response, is signaled by a dot on the screen and is therefore known as
the dot prompt. Using the dot prompt may give you more speed and flexibility than if
you work only from the Control Center.

Entering Commands

Issue a command in dBASE IV by typing it at the dot prompt and pressing ... Each
line you enter may be up to 254 characters long.

If you are typing a long command line at the dot prompt, press Ctrl-Home to open an
editing window on the screen. When typing commands in the editing window, you
have access to all the features of the dBASE IV text editor, and you can see the entire
instruction without scrolling back and forth from the beginning of the command line to
the end. In an editing window, the total command line may contain a maximum of
1,024 characters.

6 Language Reference

Commands and certain keywords may be abbreviated to the first four characters
(except SQL commands). You can abbreviate REPORT FORM to REPO FORM and
MODIFY COMMAND to MODI COMM, for example, but you must use the entire
SQL command.

You may enter command lines in uppercase, lowercase, or a combination of the two.
You may also include any number of blank spaces between the words of a command
line. Each blank space, however, counts as one character in the maximum characters
per command line.

Re-entering Commands

The dot prompt has a memory buffer called history that automatically stores
commands as you enter them. This lets you go back and edit or run a previous
command. When you installed dBASE 1V, a default of 20 commands was set for the
history buffer. You can use SET HISTORY to change the default number of stored
commands from 20 to a number from 0 to 16,000. You can also reconfigure the default
by changing your Config.db file.

Press T at the dot prompt to display commands previously stored in the history buffer.
The commands appear one at a time in reverse order. { moves the cursor back down
the list of commands. You can edit the stored command, and you can run the command
by pressing . Use DISPLAY HISTORY and LIST HISTORY to view more than one
command at a time.

SQL Prompt Interface

The interactive SQL mode lets you enter a SQL command line in much the same way
as you enter a dBASE command. At the dot prompt, you can switch to SQL mode by
entering SET SQL ON. The SQL prompt, SQL., appears. To re-enter dBASE mode
and redisplay the dot prompt, enter SET SQL OFF at the SQL prompt.

You enter a SQL command directly at the SQL prompt or in an editing window, just as
in dBASE mode. You also can use the history buffer to re-enter SQL commands. The
conditions for entering SQL commands are also the same as for dBASE commands,
except that you may not abbreviate SQL command keywords.

While in SQL mode, you can use most dBASE commands and functions to
supplement the operation of SQL commands.

For example, you can use dBASE commands to process and format SQL results for
printing reports and labels and to define the SQL environment. You can use dBASE
functions to influence how SQL commands are processed and how results are
displayed.

Before entering SQL commands for tables, views, and other SQL objects, you must
start a database using the SQL START DATABASE command. For information about
SQL command usage, refer to Chapter 6.

Chapter 1, Essentials

Filenames and Aliases

Appendix C lists the types of files dBASE IV creates and uses. You can use aliases
to access and relate the information from several different database files.

Filenames

A filename may be the actual name of a file as it is written on disk, or an indirect
reference to the filename. Indirect file references are discussed later in this section.
You may also use a drive specifier and path name along with the filename to indicate
where the file can be found.

dBASE IV accepts any valid DOS filename. When you write a file to disk,

dBASE IV assigns an extension to the file that indicates the type of information it
contains. For example, the CREATE command will write a file with a .dbf extension,
which indicates to other dBASE commands that the file contains data records.
Appendix C provides a complete listing of the dBASE IV file extensions.

NOTE Please read the section on aliases for limitations with valid DOS
.. filenames.

Using indirect references to files is an important new feature of dBASE IV. An
indirect reference is a character expression that evaluates to a filename and can be
used anywhere you are asked to provide a filename. You must use an operator in the
expression (usually parentheses) so that dBASE IV knows the character string is an
expression, not the literal filename. For example, an indirect reference may be used
in the CREATE command in place of a filename. If the variable Mfile contains the
character string “Terms”, CREATE (Mfile) and CREATE RTRIM(Mfile) will create
a database file named Terms. These commands are the same as CREATE terms.
CREATE Mfile+"01" will create a database file named Terms01.

An indirect reference is similar to using the macro substitution character, as
CREATE &Mfile, but operates much faster.

In the following example, the first USE command will call in the compiler at
runtime, while the second USE command will not:

. Mfile = "Client"
. USE &Mfile
. USE (Mfile)

dBASE 1V interprets certain characters that you might want to include in a filename,
such as () and &. To include these characters in a filename, use an indirect reference:

. CREATE "test()"

The CREATE/MODIFY QUERY/VIEW, CREATE/MODIFY LABEL, CREATE/
MODIFY REPORT, CREATE VIEW FROM ENVIRONMENT, and SET CATALOG
commands save the names of one or more currently open files, so that these files can be
opened automatically later.

8 Language Reference

CREATE/MODIFY QUERY/VIEW creates a query (.qbe) file, which can extract
records matching specified conditions, or an update query (.upd) file, which can
modify the records of a database file. When you build reports or labels with CREATE/
MODIFY REPORT or CREATE/MODIFY LABEL, you can save the settings of
system memory variables in a print form (.prf) file. The name of the .prf file is saved
in the corresponding report design (.frm) file or label design (.1bl) file. CREATE
VIEW FROM ENVIRONMENT builds a view (.vue) file, which may contain the
names of database files, index files, and format files. SET CATALOG creates a catalog
(.cat) file, which contains the names of database and view files, and their associated
index, format, label, and report files.

Sometimes the filenames saved in the .gbe, .upd, .frm, .Ibl, .vue, or .cat files are
written with their drive and path names, and sometimes they are not. This depends on
whether the filename can be found in the current directory and whether you provided
a path as part of the filename when building the .qbe, .upd, .frm, .Ibl, .vue, or .cat files.

You can provide an explicit drive and path in either of two ways:

1. You can enter the drive and path as part of the command line. For example:
. USE C:\DBASE\MYDATA\Myfile

gives the drive, C:, as well as the path, \DBASE\MYDATA, where the file can be
found.

2. You can use the query clause, which is a question mark, navigate to the location of
the file on disk, and then choose the file. Once the file is opened, it is as if you
opened it with an explicit drive and path as part of the filename.

dBASE IV determines whether to save the filename with the full drive and path names
according to the following conditions:

1. If you open a file on the default drive and in the current directory, the commands
listed previously store filenames without the drive and directory information, even
if you provide a drive and path as part of the filename. For example, suppose the
default drive is C:, and the current directory is \DBASE\MYDATA. If a catalog is
open with SET CATALOG, and you USE C:\DBASE\MYDATA\Myfile, the file is
saved in the catalog as Myfile.dbf if you typed USE Myfile.

2. If you open a file that is not on the default drive and in the current directory, you
may specify the drive and directory as part of the filename, or set up a search path
with SET PATH.

a. If you specify the drive and path as part of the filename, the drive and
path information is saved as part of the filename. So, if the current drive is
still C:, and the current directory is still \DBASE\MYDATA, and you type
USE A:\\YOURDATA\Yourfile, the file is saved in the catalog as
A:\YOURDATA\Yourfile.dbf.

Chapter 1, Essentials

Aliases

Each session of dBASE IV allows up to 40 database files to be open simultaneously
by allotting each open file its own unique work area.

Internally, dBASE IV keeps track of the open database files by their aliases. An alias
can be an alias name (which may be the same as its filename), a work area letter, or a
work area number.

If you provide an alias name with the ALIAS option of the USE command, you may
use this alias name as an abbreviation in place of the database filename when
referencing the work area. If you don’t assign an alias name with the ALIAS option of
the USE command, dBASE IV uses the filename as the default alias name.

Work area letters are the letters from A to J or a to j. Work area A is the first work
area; J is the tenth work area. For work areas greater than ten specify the work area by
number or alias.

Work area numbers are from 1 to 40. In earlier dBASE versions, you could use work
area numbers only in the SELECT command. In dBASE 1V, you can use a work area
number in any command that accepts an alias.

Some valid filenames, such as X~y, cannot be used as aliases because they contain
characters that dBASE reserves for other uses. If a filename contains characters that
prohibit it from being used as the default alias name, and if you do not provide another
alias name with the ALIAS option of the USE command, dBASE IV assigns the work
area number prefaced with an underscore (_) as the default.

NOTE You can use an indirect reference to an alias, except when the alias

. is used as a prefix for a field name. If you include an operator (usually paren-
theses) in the alias character string, dBASE IV knows that the string is an
expression, not the literal alias. For example:

. Expwa = 3
. GO 5 IN (Expwa)

positions the record pointer to the fifth record in work area 3.
. 7 RECCOUNT("client")

returns the number of records in the client file, which is open in another
work area.

Indirect alias references are similar to using the macro substitution character,
but operate much faster.

Language Reference

Programs and Procedures

If you execute the same series of commands repeatedly, you can automate the process
by saving the instructions in a program file.

Programs

A program is a sequence of dBASE IV commands contained in a disk file. When you
execute the program file, the commands in the program are executed as if you had
typed them from the dot prompt.

You can use the dBASE IV program editor, which is accessed with MODIFY
COMMAND, to write and save your programs. MODIFY COMMAND creates a disk
file with a .prg extension, or a .prs extension for an SQL program.

When creating a program file, press . to indicate the end of a command line. To
continue a command on several lines, type a semicolon at the end of each line except
the last.

In SQL, the semicolon marks the end of the command and is not read as the
continuation mark.

You execute the program file with the DO command. Before executing your program
file, DO compiles the commands into object code, which runs much faster than the
original source code in the .prg or .prs file, and it writes the object code to a disk file
with a .dbo extension. You may also use the COMPILE command to generate an
object file without executing the program. dBASE IV notifies you of any errors it
encounters during compilation.

Procedures

A program may be composed of one or more routines, called procedures. Each
procedure usually does one basic task, and can be called from other procedures,
programs, or from the dot prompt with a DO command. When the procedure finishes
its task, it returns control to the program or procedure that called it, or to the dot
prompt or Control Center.

In earlier versions of the dBASE product, procedures were usually contained in
a separate file called a procedure file. You opened one procedure file at a time,
containing up to 32 procedures, with the SET PROCEDURE command.

dBASE IV handles procedures differently. You can incorporate them directly into a
program file, or put them into a separate procedure file. The program or procedure file
can contain a maximum of 963 procedures per file. Each procedure must begin with
the keyword PROCEDURE.

dBASE IV maintains a procedure list at the beginning of every object (.dbo) file. It
treats the main program itself as a procedure, giving it a default procedure name that
matches the source program filename. This procedure name is the first one in the
procedure list. Each subsequent procedure, whether contained in the current source file
or in a separate procedure file, is added to the list when the source file is compiled to
an object file.

Chapter 1, Essentials

12

For example, suppose you have the following hypothetical program, Main:

*Main.prg
{commands>
DO A

DO B

Do C
RETURN

PROCEDURE A
{commands>
RETURN

PROCEDURE B
{commands>
RETURN

PROCEDURE C
{commands>
RETURN

dBASE IV will include four procedures in the procedure list for the compiled object
file: Main (the default procedure name), A, B, and C. Only the code at the beginning
of a program file is assigned the default procedure name. Any loose code following
RETURN and before PROCEDURE will be compiled, but will cause a warning error
during compilation. As this code will not be executed by the DO command, the
compiler verifies that you want this code embedded in your program and object

code files.

Putting the procedures in the main program file eliminates the need for many separate
procedure files. This makes programs run more quickly, since dBASE IV does not
have to open and close these procedures before running them.

Procedures may be grouped into system level procedures, program files, procedure
files, and library files. Please see Programming in dBASE IV for a complete
explanation regarding application and coding design issues.

System level procedures are a file of user-defined procedures and functions to
augment the built-in commands and functions of dBASE IV. They are specified in
Config.db with SYSPROC = <filename>.

This system procedure file will remain active for the life of a dBASE session.

Therefore when dBASE IV encounters a DO <procedure name> command in program
code, it searches for the named procedure in the following order:

Language Reference

1. Look for the procedure in SYSPROC = <filename>, if one is active.
2. Search the currently executing object (.dbo) file.

3. Search the SET PROCEDURE file, if one is active, for the first procedure with
that name.

4. Search other open object files (most recently opened first).

5. Search the SET LIBRARY file, if one is active. This file is a collection of
procedures and functions that augment the dBASE IV commands.

6. Find and open an object (.dbo) file of that name.
7. Find and compile a program (.prg) file of that name.
8. Find and compile a SQL program (.prs) file of that name.

This search order allows you to hide procedures with the same name from one another.
The dBASE IV procedure limits are:

s 64K of compiled code per procedure
® 32 active object (.dbo) files, including a file opened with SET PROCEDURE
m 963 procedures per object file

Some dBASE IV commands also compile object code from source code generated by
a design screen. For example, REPORT FORM will compile an .frg file, which was
created by CREATE REPORT, into an .fro file containing object code. Since

dBASE IV handles procedures in object file form, it does not distinguish between
procedures created by DO and COMPILE, nor between object code in format (.fmo),
report (.fro), label (.1bo), or query (.qbo) files. It also does not distinguish between
object code generated from .prg files and SQL program (.prs) files. Any object code
procedure may be called and added to the procedure list.

Using Commands

This section discusses required and optional parts of a command line, and the rules for
building expressions.

Syntax

The structure of a command line is called its syntax. Each command line begins with
a verb, and many commands also have one or more clauses that tailor the command to
meet a need. The general syntax of a command is described below.

NOTE You will find many exceptions to the general syntax paradigm shown
below. Not all commands use all the options given in this paradigm. The
exceptions are covered in the alphabetical listings. Read each entry in the
subsequent chapters carefully before using any language component.

Chapter 1, Essentials

13

14

<command verb> [<expression list>] [<scope>]
[FOR <condition>] [WHILE <condition>] [TO FILE <filename>
JTO PRINTER/TO ARRAY <array list>/TO <memvar>]
[ALL [LIKE/EXCEPT <skeleton>]] [IN <alias>]

<command verb> is the name of a dBASE command.
[] (square brackets) indicate that the item is optional.

< > (angle brackets) indicate that you must supply a specific value of the type required
for the item in the angle brackets unless it is nested within [].

/ (slash) indicates an either/or choice.

. NOTE Do not rype the square brackets, angle brackets, or slash when
entering a command, unless specifically stated.

<list> means a group of like items separated by commas.

<expression list> is one or more expressions, separated by commas. They do not have
to be the same data type (see the Expressions section following this section).

<scope> indicates the number of records the command can access. The keywords for
scope are:

RECORD <n> to specify a single record by its number

NEXT <n> for n records beginning with the current record

ALL for all the records in the database

REST for records from the current one to the end of the file

If a command accepts @ FOR or WHILE clause, however, the conditions you specify
in these clauses act as restrictions within the <scope>.

<condition> is a comparison between two or more items like Name = "Smith" or
a logical statement like .NOT. EOF().

FOR <condition> tells dBASE IV that the command applies only to records that meet
the condition. If you use FOR, dBASE IV rolls the record pointer to the top of the file
and compares each record with the FOR condition.

WHILE <condition> begins processing with the current record in the database file and
continues for each subsequent record as long as the condition is true.

TO... controls the output of the command. Certain commands allow you to send the
output to a file, a printer, a designated array, or a memory variable.

Memvars (or memory variables, or just variables) are data values you temporarily
store in memory. You assign each of these values a name so that you can later retrieve
it from memory by name. Use these values to store user input, perform calculations,
comparisons, and for other operations. You create memory variables with any of the
following commands: ACCEPT, AVERAGE, CALCULATE, COUNT, INPUT,
PARAMETERS, PRIVATE, PUBLIC, STORE, SUM, and WAIT.

The DECLARE command creates a special set of memory variables called an array.
An array is a one- or two-dimensional table of values stored in memory. Each entry in
the array is called an element, and each element in an array may be treated like a
memory variable, and may be used in an expression.

Language Reference

Commands that allow output to a memvar also allow output to an array element.

ALL [LIKE/EXCEPT <skeleton>] directs dBASE IV to include or exclude the files,
fields, or memory variables that match the skeleton. The skeleton is a general pattern
that filenames, fields, or memory variable names may match. You may use the ? and *
symbols as wildcards in the skeleton. A ? represents any single, non-null character,
while * represents any contiguous group of characters.

IN <alias> allows you to manipulate the database file in another work area without
SELECTing it as the current work area. The IN clause may contain the alias name,
letter, number, or an expression that evaluates to an alias name, letter, or number.

<filename> may be the actual name of a file as it is written on disk, or an indirect
reference to the filename. Filenames and the use of an indirect reference are discussed
earlier in this chapter.

Expressions
An expression is formed with combinations of:

Field names

Memory variables

Array elements

Constants

Functions

Operators

System memory variables

So far in this chapter, you have already encountered memory variables, array
elements, and functions.

A field name is the name of one field, or item of information, contained in a record of
a database file. Lastname might be the field name of a field that contains clients’ last
names. Each record in the database file would typically have one client’s last name
entered in the Lastname field.

If the field is not in the currently selected database file, you must qualify the field
name with the alias name. Use the alias symbol (->) between the alias name and field
name. You enter the alias symbol with two keystrokes, a hyphen (-) and a greater-than
symbol (>). For example,

Client->Lastname

means the Lastname field in the database file whose alias is Client.

NOTE When fields and memory variables have the same name, fields take
precedence over memory variables. You can change this by preceding the
memory variable name with the memory variable alias symbol, M->.

A constant is a literal value embedded right in the expression, such as "A" (a character
constant), or 2 (a numeric constant).

Operators are symbols that link memory variables, fields, constants, and functions so
that the dBASE IV processor can evaluate the entire expression as one unit. The types
of operators are discussed later in this chapter.

Chapter 1, Essentials

When you combine fields, memory variables, constants, or a function’s returned value
in one expression, they must be the same data type. See the discussion of data types in
the next section. If necessary, use functions to convert elements of differing data types
to one common type. For example, you must use a function to convert a numeric
variable to character data type before joining it with character constants. The
expressions in an expression list, however, do not have to be of the same data type.

Data Types

There are four data types that can be used in an expression: character, numeric, date,
and logical. There are really two numeric types, but no conversion is needed between
these two. The data types are discussed below.

The abbreviations for dBASE IV data types are:

<expC> for character type
<expN> for Binary Coded Decimal (BCD) numeric type

n
[
s <expF> for floating point binary numeric type
m <expD> for date type

n

<condition> for logical type

In addition, <memo field name> is used in syntax to distinguish variable length fields
used to hold large blocks of text. Memo field data is not stored in the database (.dbf)
file, but in a separate .dbt file associated with the .dbf file.

Character Type

Character type fields, constants, and variables contain character strings. Character
constants must be bounded with delimiters, such as double quotes (" "), single quotes
('"), or square brackets ([]). You may also store an ASCII decimal sequence to a
character string with the CHR() function. For example:

. STORE "A" T0 Mletter
and
. STORE CHR(65) TO Mletter

both create a character type memory variable containing the letter A.

Numeric Types

dBASE IV supports two numeric data types: type N and type F. Type N numbers are
Binary Coded Decimal (BCD) numbers. Type F numbers are the floating point binary
numbers that were used in dBASE III PLUS. The distinction between these two types
is internal to dBASE IV; both forms look the same when you display them.

16 Language Reference

Because type N numbers contain a decimal representation, they are not subject to
rounding errors. (They are subject to errors if you exceed the numeric accuracy,
however. See SET PRECISION in Chapter 3 for a discussion of numeric accuracy
with type N numbers.) Type N numbers are useful in business and financial
applications where totals must balance. Type F numbers are more useful in scientific
applications, when you are dealing with very large or very small numbers, or when
performing repeated multiplication or division. Type F numbers, however, may yield
an approximate result when rounded or truncated. Therefore, they are not as useful as
type N numbers in business and financial applications.

Numbers that you input into dBASE IV are type N by default. You may use the
FLOAT() function to convert these numbers to type F. If you define a database field as
type F, however, you may enter type F numbers directly into this field without using
the FLOAT () function for conversion.

Numeric fields imported from dBASE III PLUS are converted to type N numbers.

If a function or command returns a number, its number type depends on the function
or command and the input. The functions EXP(), LOG(), SQRT(), and all the
trigonometric functions always return a type F number. All other functions return
either a type N number or the same type as the input. Operations combining different
number types output type F numbers.

If you have very large or very small numbers, both type F and type N numbers display
in scientific notation. The exponent is preceded by the letter E, such as .6E + 23.

Date Type

Use date type fields and memory variables to store calendar dates. The size of a date
variable or field is always eight bytes, and the total memory requirement is nine bytes.
dBASE IV validates date variables whenever they are entered or changed. The default
date format is the American style, mm/dd/yy. You can change the format with SET
DATE, or with the DATE setting in Config.db. See Getting Started with dBASE IV to
change Config.db parameters.

dBASE IV provides a set of delimiters that identify date values. These are {}, referred to
as curly braces, and are equivalent to the CTOD() function. For example, {12/20/59} is
the same as CTOD("12/20/59").

A date may be subtracted from another date. The result is a number (the number of
days between the dates). A number (representing a number of days) may be added to
or subtracted from a date. The result will also be a date.

Enter a blank date in any of the following ways:

{1
771
crop "7 /")

Logical Type

Logical fields and variables are stored as true (.T.) or false (.F.). Logical fields or
variables will accept T, t, Y, or y for true and F, f, N, or n for false. You must delimit
logical values by periods (for example, STORE .T. TO Mlogic). A logical expression
is also called a condition.

Chapter 1, Essentials

17

Operators

dBASE IV provides four types of operators: mathematical, relational, logical,
and string.

Mathematical Operators

Mathematical operators generate numeric results.

+ Addition/Unary Positive

- Subtraction/Unary Negative
* Multiplication

/ Division

** or A Exponentiation

0 Parentheses for grouping

Relational Operators

Relational operators generate logical results, that is, true (.T.) or false (.F.). You can
use relational operators with character, numeric, or date expressions. Both expressions
you use in a relational operation must be of the same type. Logical comparisons of
character strings are affected by the SET EXACT command.

< Less than

> Greater than

= Equal to

<>or# Not equal to

<=or =< Less than or equal to

>=or => Greater than or equal to

$ Substring comparison (For example, if A and B are character strings,
AS$B returns a logical true if A is either identical to B or contained
within B.)

Using the substring comparison operator, you can test if one string is identical to

or contained within a second string. You can search for the substring in a memory
variable, in a character string, or in a memo field. For example, the following
procedure looks for the character string "C-111-6045" in the Clien_hist memo field,
and executes the Call_rt routine if the string is found, or the Archive routine if it is not:

USE Client
DO WHILE .NOT. EOF()
IF "C-11-6045" $ Clien_hist

DO Call_rt
ELSE
DO Archive
ENDIF
SKIP
ENDDO

The AT() function and SUBSTR() function also work with substrings, but the $
operator provides a basic test that is useful in many search routines.

18 Language Reference

Logical Operators
Logical operators obtain a logical result from comparing two expressions.

.AND. Logical and

.OR. Logical or

.NOT. Logical not

0 Parentheses for grouping

= Equal to

<>or# Not equal to
String Operators
String operators concatenate two or more character strings into a single character
string.

+ Trailing spaces between the strings are left intact when the strings

are joined

- Trailing spaces of the string preceding the operator are moved to the
end of the last string

0 Parentheses for grouping

Precedence of Operators

Each type of operator has a set of rules that governs the order in which operations are
performed. These are called the order of precedence for the operator.

Relational and string operators have only one level of precedence, and are performed
in order from left to right.

Mathematical Operators

The precedence levels for mathematical operators are:

Unary + (positive) and unary — (negative) signs

Exponentiation

Multiplication and division

R A .

Addition and subtraction

Logical Operators
The precedence levels for logical operators are:

1. .NOT.
2. .AND.
3. .OR.

Chapter 1, Essentials

Combinations of Operators

When several of the four types of operators are used in the same expression,

the precedence levels are:

1. Mathematical or string

2. Relational

3. Logical

All operations at the same precedence level are performed in order from left to right.

Use parentheses to override the order in which operations are performed. Operations
within the inner-nested parentheses are performed first.

Using SET Commands

SET commands control the dBASE IV system parameters from the dot prompt or from
within program and procedure files. Chapter 3 lists and annotates all the dBASE IV
SET commands and their default settings.

You can temporarily change any of the SET command settings from the dot prompt, or
by using the full-screen menu available by typing SET. These settings are only active
until you reset them with another SET command, or until you QUIT. You can change
some default settings, which are the settings that appear when you start dBASE 1V, by
modifying the Config.db file.

There are two common forms for SET commands:
SET <parameter> ON/OFF

or
SET <parameter> TO <expression>

Some dBASE III PLUS SET commands, such as SET DOHISTORY, SET FIXED, and
SET MENU, are not used by dBASE IV. For compatibility with dBASE Il PLUS
programs, dBASE IV does not return an error message when one of these SET
commands is in a program or is entered at the dot prompt.

Using Functions

Functions perform specialized operations that augment and enhance the dBASE 1V
commands. Functions return a value. Some functions evaluate or convert data, and
some perform an action.

dBASE IV functions all have parentheses after the function name, except for the
macro substitution function. The parentheses may or may not contain parameters to
be evaluated.

The macro substitution (&) function instructs dBASE IV to retrieve the contents of a
character memory variable, and not the memory variable name itself. To use it, simply
place the & symbol before the memory variable name:

20 Language Reference

. STORE "Lastname, Firstname" TO Mfields
. LIST &Mfields

In this example, LIST &Mfields is equivalent to LIST Lastname, Firstname.

The macro substitution function allows you to prompt the user for a piece of
information in a program, and immediately use that information as part of a command.
With macro substitution, you can build part of a command and allow the user to
supply certain arguments.

When you use a macro, dBASE IV does not compile the command line at compile
time. When the command is encountered at run time, it is expanded using the current
value of the memory variable following the &, and the line must be recompiled. This
slows processing time.

dBASE IV allows you to use macro substitution with a variable in place of a command,
such as:

. Command = [RESET IN 1]
. &Command

If you do this, dBASE IV must compile the command every time it executes it.
Depending on the command, this may require calling in the full compiler once again.

If you use macro expansion only in expressions, most of the command can be
compiled at compile time, and there is no need to call in the compiler again at run
time.

TIP You can speed up processing time by using an indirect reference to a
filename rather than macro substitution. (Indirect references are discussed
earlier in this chapter, in the Filenames section.)

For more examples of how macro substitution works, see the discussion of the &
function in Chapter 4, “Functions.” Don’t confuse macro substitution with keyboard
macros, in which you store a series of keystrokes.

User-Defined Functions

dBASE IV allows you to create your own functions. With a user-defined function
(UDF), you can enhance the dBASE IV language to perform other operations.

What is a UDF?

A UDF is a special kind of procedure that can be called from within a dBASE IV
command line. It begins with the FUNCTION command, and contains commands and
an optional parameter list that it uses to return a value. The UDF procedure begins
with a FUNCTION command followed by the name you provide for this UDF. The
FUNCTION command distinguishes a UDF as a special type of procedure. Although
other procedures do not require a RETURN command, you must end the UDF with a
RETURN command and values to be returned. See the FUNCTION and RETURN
entries in Chapter 2, “Commands,” for further information on using these commands.

Chapter 1, Essentials

After you create a UDF, you can call it from a command line just as you would use
any other dBASE IV function. The syntax for calling a user-defined function is:

<UDF name>([<parameter list>])

When dBASE IV encounters the UDF name in a2 command line, it searches for and
executes the UDF procedure. Therefore, both the UDF name in the calling command
line and the associated FUNCTION command in the procedure must have the same
name. The optional parameter list contains expressions that are passed to the UDF. The
UDF may contain a PARAMETERS command line that assigns local variable names
to each item in the parameter list. The parentheses must follow the UDF name in the
calling command line, even if these parentheses do not contain parameters.

Example of a UDF

The following sample code, contained in a hypothetical program named Calendar,
illustrates the essential parts of a UDF.

The first part of the program prompts the user to enter a year. The program must print
an item for 29 February only if the year is a leap year, because this date only occurs in
leap years. If the year is not a leap year, the program must print blanks in this area.
The command line

@ 19,45 SAY IIF(LEAP(year), "29 February", SPACE(11))

prints either a line item for 29 February or blanks, depending on the value returned by
the UDF named LEAP(). This command passes a parameter, year, which is the year
that the user entered, to the UDF. If the UDF returns a logical true, the text "29
February" prints. If the UDF returns a logical false, the area is blanked out with 11
spaces and no text prints. See also the usage of the IIF() function in Chapter 4,
“Functions.”

The UDF that determines if the year is a leap year begins with the FUNCTION
command and ends with the RETURN command. Note that this procedure is
contained in Calendar.prg, but it could also be in any other open procedure file. The
UDF name, LEAP(), corresponds to the calling statement in the @ command line
above. The procedure creates one local variable, yr, for the parameter, year, that was
passed by the @ command line. The next line stores a logical true to the variable
isleap if the year is a leap year, and a logical false if the year is not a leap year. Check
the MOD() function in Chapter 4, “Functions,” to see how MOD() determines this.
The RETURN command line returns the true or false value to the @ command line
that called the UDF.

22 Language Reference

* Calendar.prg
*

SET TALK OFF

year = 0

@ 12,12 SAY "Enter the new fiscal year: " GET year PICTURE "9999"
READ

é 19,45 SAY IIF(LEAP(year), "29 February", SPACE(11))

FUNCTION LEAP
PARAMETERS yr
isleap = ((MOD(yr,4) = 0) .AND. (MOD(yr,100) <> 0)) .OR. (MOD(yr,400) = 0)
RETURN isleap

Limitations on UDFs

Two types of limitations affect how you use UDFs: general UDF rules and restrictions
on intervening commands. General UDF rules apply when you create or run a UDF.
Restrictions on intervening commands apply to format files and ON command
processing, as well as to UDFs.

General UDF Rules

The UDF name cannot be the same as an existing dBASE IV function or command. If
a UDF has the same name as an existing dBASE IV function, the dBASE IV function
executes, not the UDF. For example, do not name your user-defined function EXP,
because EXP() is a dBASE IV function.

You can nest UDFs, so that one UDF calls another UDF. The maximum number of
UDF:s that can be nested is 32, but the upper limit really depends on the complexity of
each of these nested UDFs. A series of complex UDFs may run out of memory before
you can reach the maximum nesting level.

You cannot use UDFs in a SQL command, nor can you use SQL commands in a UDF.
The UDF may be called from a SQL program (.prs) file, however, as long as it not
called from a SQL command, does not contain SQL commands, and does not contain
any dBASE commands that are prohibited in SQL mode.

Restrictions on Intervening Commands

UDFs interrupt a dBASE IV command in order to execute other commands. The
commands that are executed during the interruption are called intervening commands.
SET FORMAT and the ON commands also interrupt commands in order to execute
intervening commands. All intervening commands, whether called by ON, SET
FORMAT, or UDFs, are subject to certain restrictions.

Chapter 1, Essentials 23

In intervening commands, you cannot recursively APPEND, BROWSE, or EDIT the
currently active work area. Therefore, you cannot BROWSE a database file containing
a calculated field that calls a UDF, if the UDF will try another BROWSE (or an
APPEND or EDIT) of the same database file.

You also cannot use LIST and DISPLAY recursively in intervening commands, even
if the commands are LISTing or DISPLAYing records in another work area. Therefore,
a UDF called from a LIST command cannot include another LIST command (or a
DISPLAY command).

Other restrictions on intervening commands are affected by the DBTRAP setting.
DBTRAP provides a net of protection against program errors that may give you
unexpected, and undesired, results. Although DBTRAP can be reset with the SET
DBTRAP command or by changing DBTRAP in the Config.db file, you should not
change this setting unless you are aware of the possible results, and are either sure
these results will not affect your program or are providing other safeguards if an
€ITor OCCurs.

See Chapter 3, “SET Commands,” for further information on the restrictions and uses
of SET DBTRAP.

Using System Memory Variables

24

System memory variables are memory variables that dBASE IV automatically creates
and maintains. They control the appearance of printed and screen output and also store
printer settings. More specifically, they control:

m Characteristics of printjobs, such as form feeds and the number of copies printed

m The appearance of paragraphs in reports and memo fields, such as alignment,
indentation, and margins

s The appearance of the printed page, such as the print pitch, print quality, page
length, and page left offset

m Defaults of the word wrap editor, such as width of tabs

The names of all system variables start with an underscore (_) character, to distinguish
them from ordinary memory variables. (You may not define any other memory
variables starting with an underscore.)

Upon start-up, dBASE IV automatically initializes system variables to their defaults,
except _pdriver which is often changed from the Config.db. You can change their
values through the reports design and labels design screens, at the dot prompt, from
the Config.db file, or in a program. The CLEAR MEMORY and RELEASE
commands do not remove system memory variables from memory.

System memory variables follow the normal scoping rules for memory variables.
When you have finished running a program containing privately declared system
variables, the variables automatically revert to their original settings. You cannot
RELEASE these variables.

Language Reference

Many system memory variables work on the data stream that is being output. This
streaming output is produced by all commands that create output, except the @,
@...TO, and EJECT commands. Streaming output is not positioned with row and
column coordinates, but its destination may be controlled by the SET CONSOLE,
SET PRINTER, and SET ALTERNATE commands, and by the TO PRINTER/TO
FILE <filename> options of commands such as LIST and DISPLAY.

Streaming output starts at the current cursor position on the screen, or at the current
printhead position on the printer, or at the current file pomter position if the data is
being sent to a disk file.

NOTE Even though @ and @...TO commands do not produce streaming
output, they may affect the positioning of subsequent output. For example,
changing the current cursor position on the screen with an @ command affects
where a later ?/?? command will appear.

The system memory variables that act on streaming output are _box, _pageno,
_pcolno, _pform, _plength, _plineno, _pspacing, and _tabs.

Other system memory variables that do not act on streaming output may be classified
as printer-specific, printjob-specific, or paragraph-specific.

Printer-specific system memory variables control printer settings. These are
_padvance, _pdriver, _ploffset, _ppitch, _pquality, and _pwait.

Printjob-specific system memory variables are activated by the PRINTJOB command.

These are _pbpage, _pcopies, _pecode, _peject, _pepage, and _pscode.

Paragraph-specific system memory variables affect the formatting of text. These are
_alignment, _indent, _lmargin, _rmargin, and _wrap.

You can see the relationships among several system memory variables in Figure 1-1.
These system memory variables are:

_plength; page length
_ploffset; page offset from left edge

L]
(]

m _lmargin; left margin from _ploffset

m _rmargin; right margin column number
]

_indent; paragraph indent

Chapter 1, Essentials

25

r' A
Top Margin/Header Area
_indent
ON PAGE
endth page handler
_plengt
v
Footer/Bottom
v Margin Area
‘_ploﬂs'et‘ _rmargin .
«—>
_Imargin

Figure 1-1 Page layout for typical printjob

The ON PAGE footer and header procedures also affect the printed page. See the
ON PAGE description and page handler examples in Chapter 2, “Commands.”

The reports design and labels design screens handle system variables for you. When
you create a report (CREATE/MODIFY REPORT) or label (CREATE/MODIFY
LABEL), you can store the changed system variable definitions to a binary print form
file, which has a .prf extension. To change the default settings in this file, refer to
Using dBASE IV. You can also create additional customized print form files. These
files normally have the same name as the report or label, with the file extension .prf.

dBASE IV activates this print form file when you next modify the report or label,
or when you select Use print form from the Print menu. The REPORT FORM
command, however, does not automatically activate the print form. You must
determine print settings prior to issuing REPORT FORM by setting _pform equal
to the print form filename, or by making changes to individual system variables.

Language Reference

o

=

S

=
o

28

Language Reference

Commands

”?7?

27? evaluates and displays the value of one or more expressions with optional
formatting, styling, and positioning. The output of ?/?? can go to the console, the
printer, or to an alternate file, exclusively or in combinations.

Syntax

77 [<expression 1>
[PICTURE <expC>] [FUNCTION <function list>]
[AT <expN>] [STYLE]]
[,<expression 2> ...] [,]

Usage

If SET CONSOLE is ON, the output of the ? and ?? commands is sent to the console.
If SET PRINTER is ON, the output of the ? and ?? commands is sent to the printer. If
an alternate file has been set with SET ALTERNATE TO <filename>, and SET
ALTERNATE is ON, then output of the ? and ?? commands is also sent to the
alternate file. Any or all of the console, printer, and alternate file devices may be SET
ON at any time.

? outputs a carriage return and line feed before displaying the results of the expression
list.

77 displays the expression list starting at the current output position.

You may specify as many expressions with optional PICTURE, FUNCTION, AT, and
STYLE clauses to the ?/?? commands as will fit on the 1,024-character command line.

If you need to display more expressions than can fit on the command line, you may
use the trailing comma to specify that another command is pending. A trailing comma
indicates that complete output of all expressions in the current ? or ?? command
should be delayed until execution of the next ? or ?? command that does not end with
a trailing comma. For example:

Chapter 2, Commands 29

* Print report detail

7?7 date_trans AT 0,

7?7 part_id AT 10,

7?7 Goods->part_name AT 21,

?? part_qty AT 53 PICTURE "999",

7?7 Goods->price AT 58 PICTURE "99,999.99",

* Extend price

tot_price = ROUND(part_qty * Goods->price,?2)

? tot_price AT 70 PICTURE "99,999.99"
?

Options

The PICTURE, FUNCTION, AT, and STYLE options let you customize the
appearance of output. Note that the STYLE clause is ignored when ? or ?? outputs to
an alternate file.

PICTURE templates and FUNCTION clauses format the output. All of the PICTURE
template symbols and functions used for output work with the ?/?? command. See the
@ command for descriptions.

Three functions (V, H, and ;) are used only with the ?/?? command.

The V<n> function specifies that ?/?? command expressions are displayed in a vertical
column with a width of <n> characters. Note that without @V, the width of memo
fields defaults to the number of characters established by SET MEMOWIDTH. If you
vertically stretch a field with @YV, the text inside it can wrap. Non-memo fields,
however, are still affected by the PICTURE template, if any, and text may be truncated
at the end if the text string is longer than the template allows.

Using the V function with a 0 (zero) parameter has no effect on non-memo fields. On
a memo field, however, VO causes the lines of the field to be output just as they
appeared in the editor. When you are printing fields stretched by the V function, these
fields will finish printing, and a line break will appear, before a VO field begins to
print.

The H function is used for memo fields only when the _wrap system memory variable
is true (.T.). When you use the H function, memo fields word wrap using the system
memory variables _lmargin and _rmargin. The H function is used only with memo
fields.

The ; mark causes text to wrap at the point where semicolons are encountered in that
text. The semicolons in the text do not appear in the output. See Chapter 5, “System
Memory Variables,” for more information on various formatting controls.

dBASE IV always honors paragraph breaks contained within memo fields.

30 Language Reference

Some expressions may contain data that does not completely fill the specified
PICTURE template; these are called short fields. There are four functions that align
short fields within their PICTURE templates:

@B Left-aligns data within a template

@I Centers data within a template

@] Right-aligns data within a template

@T Used with alignment functions to trim off blank spaces prior to alignment

The 2/?? command also supports two other functions, $ and L. The $ function displays
a floating currency symbol before or after the amount. If SET CURRENCY is LEFT,
the symbol displays just before the amount; if RIGHT, it displays just after the
amount. The L function displays leading zeros in short fields.

If a 2/7? command ends with a comma, the first line of all expressions will be
displayed, but subsequent lines of vertically stretching expressions will be kept
internally and not output until one of the following events takes place:

1. An ENDPRINTJOB command is executed.
2. A ? command is executed.
3. A ?? command without a trailing comma is executed.

In items 2 and 3 above, a ? command or a ?? command, executed within an ON
command such as ON PAGE or ON ESCAPE, will not end output of a vertically
stretched field which started prior to the ON command. But the output of vertically
stretched fieldsstarted during an ON command is ended by executing a ?? command
without a trailing comma or by executing any ? command.

The optional AT clause allows you to specify the column at which the expression
displays. The numeric expression must be between 0 and 255. Use this option to
display columns of text which must line up, regardless of the length of the printed text,
to the left of the column.

The optional STYLE clause allows you to display the expression in various styles such
as bold or italic. Depending on your monitor, STYLE may not change the output
displayed on the screen, but will affect printed output. The STYLE clause can consist
of letters, numbers, or a combination of the two.

The letters you can use in a STYLE clause are:

B — bold
I —italic
U — underline
R — raised (superscript)
L — lowered (subscript)
The numbers you can use are 1 through 5, and they activate the user-defined fonts.

The starting and ending control codes for these fonts are defined in the Config.db file
through the PRINTER <printer int> FONT statement.

You may combine different styles, and print different text on the same line in different
styles.

Chapter 2, Commands 31

32

You may also use the ??7? command and the system memory variables _pscode and
_pecode to change typestyles. In general, use ?/?? with the STYLE option to change
typestyles of individual items, ??? to change styles on a broader basis within a
document, and _pscode and _pecode to define the overall typestyle for a document.

TIP Specify ? without an expression to display a blank line, for example to skip
a line in the output. (To double or triple space the output, use the _pspacing
system memory variable.) Use ?? without an expression to specify a non-
operative function (for example, ON KEY LABEL F2 ??, to disable the F2 key).

Special Case

Use the B, I, or J functions to override an overall _alignment setting, or individual
paragraph alignments, in a memo field. The following routine vertically centers a
memo field, named Notes, and stretches it within the 15-character display column
defined by a FUNCTION. The vertical field centering overrides the initial _alignment
= "LEFT" setting.

_alignment = "LEFT"
_wrap = .T.
? Notes FUNCTION "IV15"

If _wrap is set to false (.F.), the H function is ignored when you print a memo field.

Examples

From the Client database file, to print the Client_id and the Client field values in bold
and the value of Lastname in italics:

. USE Client

. SET PRINT ON

. 2 Client_id STYLE "B", Client STYLE "B", Lastname STYLE "I"
A00001 WRIGHT & SONS, LTD Wright

Overstriking text is sometimes useful to show changes made to a document. To
overstrike a line of text from a program file, use the AT option with _wrap set to false
(.F.). (Chapter 5 discusses _wrap and other system memory variables.)

_wrap=.F.

SET PRINT ON

? "Pending receipt of file."
DXL TR e received 3/7/88" AT O

Language Reference

To overwrite rather than overstrike text, use the technique just shown with _wrap set
to true (.T.). With overwrite, only the second line prints. With overstrike, both lines
print. Note that overwriting and overstriking apply only to the hard copy of a
document; on screen, the document cannot be overwritten or overstruck.

See Also

77?7, @, PRINTJOB, SET ALTERNATE, SET CONSOLE, SET MEMOWIDTH, SET
PRINTER

Chapter 5, “System Memory Variables”

7?7
7?77 sends output directly to the printer, bypassing the installed printer driver.

Syntax
777 <expC>

Usage

You may use the ??? command to send characters to your printer that will not change
the printer’s current row and column position. You usually send printer control codes
when the printer driver does not support a particular printing capability.

The ?/7? command and the system memory variables _pscode and _pecode also send
printer control codes to the printer. In general, use ?/?? (STYLE option) to change
typestyles of individual text items, ?7?? to change typestyles on a broader basis within a
document, and _pscode and _pecode to define the overall typestyle for a document.

NOTE ??? is the only way to output CHR(0) to the printer. _pscode and
. _pecode cannot do this.

Printer control codes are specific to the printer you are using. Consult your printer
manual for the necessary control codes.

Printer control codes may include any printable character except the double quote
mark ("), as well as non-printable characters, such as Esc. You can define these non-
printable characters in a variety of ways.

Control character specifiers are strings that identify non-printable characters. You must
include the curly braces ({ }) and surround the entire string in quote marks (see the
examples below).

Chapter 2, Commands 33

34

Table 2-1 Control character specifiers

ASCIl Code

O 00 1 N W A W DN = O

[NS TR N TR NG T NG T NG T N S S T e T S SO G S
D H W o = O O 0 9 & Lt b W N —= O

Control Character Specifier
{NULL} or {CTRL-@}
{CTRL-A}

{CTRL-B}

{CTRL-C}

{CTRL-D}

{CTRL-E}

{CTRL-F}

{BELL} or {CTRL-G}
{CTRL-H}

{TAB} or {CTRL-I}
{LINEFEED} or {CTRL-J}
{CTRL-K}

{CTRL-L}

{RETURN} or {CTRL-M}
{CTRL-N}

{CTRL-O}
{CTRL-P}
{CTRL-Q}
{CTRL-R}
{CTRL-S}
{CTRL-T}
{CTRL-U}
{CTRL-V}
{CTRL-W}
{CTRL-X}
{CTRL-Y}

(continued)

Language Reference

Table 2-1 Control character specifiers (continued)

ASCII Code Control Character Specifier

26 {CTRL-Z}

27 {ESC} or {ESCAPE} or {CTRL-[}
28 {CTRL-\}

29 {CTRL-]}

30 {(CTRL-"}

31 {(CTRL-_}

127 {DEL} or {DELETE}

TIP To print a left curly brace, enclose it in curly braces, such as ??? "{{}".
Statements such as, ??? CHR(123) or ??? "{" will not work.

Special Case

Although it is easier to send output to a PostScript printer from the Control Center or
from a program, you can print to a PostScript printer from the dot prompt. For all
PostScript commands, be sure to include a space after each command; otherwise,
you’ll get no printed output. Use the following procedure:

1. Load the printer driver.

2. Send some output to the printer to initialize the .dld file.

3. After printing the database file, send an eject command with the "FF" string to
eject the last page of output. For example:

. _pdriver="postscri.pr3"
. LIST TO PRINT
L P27 NFET

If you do not send any output to the printer after initializing the .dld file, the file is
erased from the printer’s memory. To erase the .dld file manually, enter:

. 727 CHR(4)

Chapter 2, Commands 35

You can use the 7?7 command to download fonts to the printer, but proportional fonts
will not line up correctly without a program. For example, to send the default
monospace Courier font, enter:

. 2?77 "IFONT "

Examples

Suppose you want to send an Esc-E to a Hewlett-Packard LaserJet printer. (This code
resets the printer.) Knowing that the ASCII code for Esc is 27 and an E is code 69, you
can use the CHR() function, which converts a number to its ASCII character
equivalent:

. 222 CHR(27) + "E"

Use control character specifiers:
L 277 [ESCHE”

Use entirely ASCII codes, enclosing the codes within curly braces:
A I

Use a combination of ASCII codes and letters:

L P22 M27ET

See Also
777, @, CHR(), INKEY(), LASTKEY(), READKEY(), SET PRINTER TO
Chapter 5, “System Memory Variables”

Language Reference

@ is used to create custom forms for data input and output. It displays or accepts
information in a specified format at a given set of screen coordinates.

Syntax

@ <row>, <col>

[SAY <expression>

[PICTURE <expC>] [FUNCTION <function list>]]

[GET <variable>
[[OPEN] WINDOW <window name>]
[PICTURE <expC>]
[FUNCTION <function list>]
[RANGE [REQUIRED] [<low>,] [,][,<high>]]
[VALID [REQUIRED]<condition>[ERROR <expC>]]
[WHEN <condition>]
[DEFAULT <expression>]
[MESSAGE <expC>]]

[COLOR [<standard>] [,<enhanced>]]

Usage

<row> and <col> are numeric expressions. When you SET DEVICE TO SCREEN,
<row> can range from 0 to the height of the screen display, in lines. <col> can range
from 0 to 79 columns. <row> and <col> coordinates are always in relation to the upper
left corner of the active window, whether it is the full CRT screen or a window that
you have defined.

When you SET DEVICE TO PRINTER or SET DEVICE TO FILE, the <row>
coordinate can range from O to 32,767 and the <col> coordinate from O to 255.

With SET STATUS ON, the third line from the bottom of on the screen is reserved for
the status line. If you SET STATUS OFF and do not SET SCOREBOARD OFF, line 0
is used for status information display. To free these lines for other use, you must SET
STATUS OFF and SET SCOREBOARD OFF.

NOTE Even though @ does not produce streaming output, it may affect the
positioning of subsequent output. For example, changing the current cursor
position on the screen with an @ command affects where a later ?/?? command
will appear.

Chapter 2, Commands

37

38

If you change a field’s contents, and that affects the results of other calculations or
field defaults defined on the form, then the calculations are updated and the results are
redisplayed when you press positioning keys such as PgUp and PgDn.

The SAY keyword displays information that you do not want to change. The value of
any valid dBASE IV expression can be displayed.

The GET keyword displays and allows editing of data values contained in fields, or
currently assigned to memory variables or arrays. The READ command activates the
GETs and a full-screen editing mode that lets you change the GET fields.

Besides using GETs with the READ command, you can create a format (.fmt) file that
contains @ commands. (Format files are text files that can be created with the
MODIFY COMMAND program editor or another text editor.) CREATE/MODIFY
SCREEN helps you lay out an input or output screen, and generates an .fmt file that
contains @ commands. You can use a format file with the APPEND, BROWSE
[FORMAT], CHANGE, EDIT, INSERT, and READ commands.

You can use SET DEVICE TO PRINT to route @ commands to the printer. GETs are
not routed to the printer. Most printers have limitations on the row and column
coordinates. When sending @ commands to a printer, decreasing the row number in
consecutive @ commands causes a page eject. Similarly, if two @ commands have the
same row coordinate, the second one should have a larger column coordinate.

A user-defined function (UDF) can change a value in the GET variable.

Options
The options of the @ command are described in alphabetical order.

@ <row>, <col> — Without any options, the @ command clears the specified row
beginning at the specified column position. The $ function can be substituted for the
current <row> and <column> values. For example, to display a message on
incremental rows of the screen, use:

. @ $+1,2 SAY "MESSAGE"

COLOR — With a color monitor, this option specifies the colors used for the SAY and
GET variables. The <standard> color is used for SAYs, the <enhanced> color for
GETs, and they follow the same rules as these options in the SET COLOR command.
You can specify a foreground and background color for each one. See the SET
COLOR command for information on using these codes to change the colors of the
screen display.

Except for SET COLOR to U and SET COLOR TO I, color settings will not appear on
a monochrome system, although you may use the COLOR settings for applications
that will be used with a color terminal.

Language Reference

Either the standard or enhanced colors can be left unchanged by omitting a color code.
If you leave out the standard code, but want to change the enhanced colors, you should
precede the enhanced code with a comma so that the command parser can determine
that the standard code has not been changed. For example, to change the enhanced
color to white characters on a red background:

. @ 2,20 GET Text COLOR ,W/R

The colors you specify override the SET COLOR command, but only for the output of
the current @ command.

DEFAULT — Can be used only with format (.fmt) files to assign a preset value to a
GET variable; it must match the GET variable’s data type. The expression is evaluated
only when you add records to a database file. The DEFAULT expression appears in
the GET variable, and pressing . assigns the value to the GET variable. A DEFAULT
value will be overridden by any value brought forward by a SET CARRY command.

ERROR — <expC> is any valid character expression. Use this option to display your
own message when the VALID <condition> is not met. Your message overrides the
dBASE IV message Editing condition not satisfied. AT clause of the SET
MESSAGE has no effect on the ERROR clause position.

FUNCTION — The FUNCTION option is similar to the PICTURE option. See the
description of PICTURE below. FUNCTION applies to the entire data item, while
PICTURE applies to a specified portion of the data item.

MESSAGE — <expC> must be a valid character expression, which then appears
when a READ is executed and the cursor is placed in the GET field associated with
the message. The message is centered on the bottom line of the screen unless you
reposition it with the AT clause of SET MESSAGE.

WINDOW <window name> — When you use the @ command with GET <variable>,
and the variable is a memo field, you can use the WINDOW option to open a separate
editing window. Put the cursor on the memo field and press Ctrl-Home to open the
window; Ctrl-End closes the window. The word “memo” you see on screen is in
uppercase if the field contains text. If the field is empty, the word “memo” is in
lowercase letters.

The <row>, <col> parameters of @...GET used with the WINDOW option refer to
local coordinates within the window border.

The <window name> is the name of a window you have already defined.

If an @...GET is performed in an active window that is too small to hold the value of

the variable being read, the READ command will terminate with the error message,
Position out of window.

Without the WINDOW option, dBASE IV uses full-screen editing. The editor within
the window is the one you specified in the Config.db file.

OPEN WINDOW <window name> — The editing window for your memo field can
be open by default. You don’t need to open and close it if OPEN is included in the
WINDOW option. You do use Ctrl-Home and Ctrl-End to enter and exit the window.

Chapter 2, Commands 39

PICTURE — Use this option to restrict the type of data that may be entered into a
variable, or to format the data displayed. The clause may consist of a function, which
is preceded by an @ symbol and affects all the input or output characters, or a
template, which affects input or output on a character by character basis. A PICTURE
clause can be any character expression, although this is usually a string of characters
delimited by quotation marks. If the clause is a memory variable, it is enclosed in
parentheses.

The PICTURE option can also accept character expressions that are variables
containing function and template symbols. Formatting contained in variables works no
differently than function and template symbols used in a program or on a command
line.

PICTURE functions and templates are described in greater depth in the sections
below. Functions may also be used with the FUNCTION option, and these do not need
to be preceded with the @ symbol. The PICTURE and FUNCTION options can each
be used twice on any command line, once with SAY and once with GET.

RANGE — Use this option with character, numeric, and date variables to specify
lower and upper bounds. The <low> and <high> expressions must be the same data
type. They define the minimum and maximum values that may be entered in response
to the GET. The RANGE values are inclusive.

Enter only one expression if you want to specify only a lower or upper limit. You must
include the comma (,) as in RANGE ,30 or RANGE 10, . The comma helps the
command parser determine whether you supplied the <low> or <high> value. If you
then enter an invalid number or date, dBASE IV prompts for a new value until a valid
number or date is entered.

The prompt RANGE is <low> to <high> (press SPACE) appears if you attempt to
enter a value out of range. You must press Spacebar, then re-enter the value. <low>
and <high> are replaced by the word “None” in this message if you did not provide a
<low> or <high> expression in the RANGE option. For example, RANGE is 1 to
None (press SPACE) appears if no <high> expression was provided in the RANGE
option and you attempt to enter a 0. You must press Spacebar, then enter a value
greater than 0.

If you specify a RANGE and press ! in response to a GET, no range checking is done.
Use the REQUIRED keyword described below for specified range checking.

An ON READERROR command, and the commands it may execute, preempts the
range checking messages.

VALID — This option can state a condition that must be met before data is accepted
into the GET variable. If the condition is not met, the message Editing condition not
satisfied or the message you defined with the ERROR option appears.

40 Language Reference

NOTE You can enter a user-defined function as the VALID condition, if the
function returns a logical value. This enables you to have quite powerful and
extensive data validation. Refer to Chapter 1, “Essentials,” for more
information on user-defined functions.

REQUIRED — The REQUIRED option checks for the VALID clause and the
RANGE parameters when you try to move the cursor into the GET field, whether you
change the record or not. Without REQUIRED, the check occurs only when you
change the GET field; changing other fields in the record does not recheck the VALID
clause or RANGE parameters. The REQUIRED keyword must immediately follow
RANGE or VALID, and only refers to the associated RANGE or VALID clause. For
example, to make REQUIRED refer to both RANGE and VALID in a command line,
use RANGE REQUIRED and VALID REQUIRED.

WHEN — You can provide a condition that is evaluated when you try to move the
cursor out of the GET field. If the condition is true (.T.), the cursor moves into the
field for you to edit. If the condition is false (.F.), the cursor skips the field and moves
to the next one.

Format Functions

You may use most format functions with the PICTURE or FUNCTION options, or
with the TRANSFORM function.

If you use a format function in a PICTURE clause, the @ symbol must appear as the
first character in the clause. If you use a format function with the FUNCTION option,
the @ symbol is not needed. If you use both a format function and a template in a
PICTURE clause, a space must separate the two.

dBASE IV provides the format functions listed in Table 2-2.

Table 2-2 Format functions used in dBASE IV

Function Description

! Allows any character and converts letters to uppercase.
A Displays numbers in scientific notation.

Displays data in currency format.

Encloses negative numbers in parentheses.

Alphabetic characters only.

Left-aligns numeric value in @...SAY only.

Displays CR (credit) after a positive number.

The current SET DATE format for dates.

European date format.

Mmoo oOw» ™ &

(continued)

Chapter 2, Commands 1

Table 2-2 Format functions used in dBASE IV (continued)

Function Description

I Centers text in @...SAY only.

J Right-aligns text in @...SAY only.

L Displays leading zeros.

M Allows a list of choices for a GET variable.

R Displays literal characters in the template, but doesn’t enter them in
the field.

S<n> Limits field width display to <n> characters and horizontally scrolls

the characters within it in <n> columns. <n> must be a literal
positive integer.

T Trims leading and trailing blanks from a field.

>

Displays DB (debit) after a negative number.

VA Displays zero numeric value as a blank string.

Some functions are restricted according to the data types to which they apply:

m The functions *, $, (, C, L, X, and Z can be used only with numeric data (either
type N or type F). Furthermore, (, C, and X can be used only to display data (that
is, with the SAY clause). The functions $ and L can be used with SAY or GET.

s D and E apply only to date data.

m A, M, R, and S<n> are relevant only to character data.

You can define new format functions by combining the functions in the table. For
example, the function XC displays DB after negative numbers and CR after positive
numbers. However, you cannot use some functions together, such as D and E.

The $ function displays the expression with the currency symbol immediately before
or after the amount. You can only use this function in GETs if SET CURRENCY is
LEFT. The currency symbol, this symbol’s placement in the display, the separator
characters, and the decimal symbol can be changed with the SET CURRENCY, SET
SEPARATOR, and SET POINT commands.

Use S<n> (with no space between S and the variable) to display and edit a character
GET variable. The number of columns you specify, by the literal integer <n>, must be
less than the actual length of the character field or memory variable. Do not put any
spaces between the S and the integer, and do not include the angle brackets (<>).

42 Language Reference

The string scrolls within the specified width, allowing you to view and edit the entire
character string. Use «-, —, Home, and End to bring hidden characters into view.
When you are entering data, the string scrolls automatically.

The M function allows you to have a list of choices for a GET variable and has the
following format:

FUNCTION "M «list of choices>"

The choices in the list can be either literal strings or literal numbers and must be
separated by commas. Since the comma indicates a new choice in the list, do not
specify choices with embedded commas. Using two commas at one place in a list
creates a blank value.

NOTE If the format functions M and ! are both specified in the PICTURE
clause of the GET statement, the multiple choice function will override the
uppercase function. The text of the multiple choices will not be translated to
uppercase when displayed on the screen or when stored to a variable.

GET displays the first item in the list. If the GET variable’s value is not the same as
one of the values in the list, the variable will contain the first value in the list when
you issue a READ. Press Spacebar to see the remaining choices or until the desired
value appears. Press ! to select an item and move to the next field.

NOTE Any data in an input field is lost when the first GET variable choice is
displayed in the field.

You can also select an item by typing its first letter. If items in the list do not have
unique first letters, the next item matching the letter is selected.

The B, I, and J functions trim and align short fields within a PICTURE template. If
you specify no alignment, strings are left-aligned and numbers right-aligned.

Templates

You form a template by using a single symbol for each character to be displayed or
input.

If you use the R function with a template containing characters other than template
symbols, those characters are inserted into the display, but not stored as part of the
GET variable. If you do not use R, those characters are displayed and are stored in the
GET variable. R applies only to character type variables. For numeric variables, non-
template symbols are always inserted into the display and never stored as part of the
number. Avoid using non-template symbols for date and logical variables.

dBASE IV provides the template symbols listed in Table 2-3.

Chapter 2, Commands 43

Table 2-3 Template symbols

Symbol Accepts

9 Allows only digits (0-9) for character data, digits or signs (+ or —) for
numeric data.

A digit, a space, a period (.), or a sign (+ or —).
Alphabetic characters only.

Alphabetic or numeric characters, including the underscore (_); no
spaces or punctuation.

Y, y, N, or n. Converts y or n to uppercase letters.
T,E Y, or N.

Any character.

X O

Any character, but converts alphabetic characters to uppercase.

other Use the R function if you plan to use any other symbol in a template.
R allows the literal values to appear in the template, but not in the field
contents.

There are four other symbols that may be used in numeric templates. These are
described in Table 2-4.

Table 2-4 Numeric template symbols

Symbol Description

Separates integers from decimals with a period (or with another
decimal separator indicated by SET POINT)

, Separates thousands with a comma (or with another character indicated
by SET SEPARATOR)

* Displays asterisks in place of leading zeros

$ Replaces leading zeros with a dollar sign (or with another currency
symbol indicated by SET CURRENCY)

Symbols !, #, 9, A, N, and X may be used with SAYs and GETs. Symbols 9, #, A, N,
and X prevent undefined characters from being input, but not from being displayed.

If you use a PICTURE template to GET a decimal number, you must include the
decimal point in the template. The template must also leave room for at least one digit
to the left of the decimal point, and leave room for the sign, if you want to use the
minus sign.

44 Language Reference

Programming Notes

If you want to use a multi-page format (.fmt) file in which the @...SAY...GETS
continue on from 2 to 32 pages, include a READ wherever you want a page break. The
PgDn and PgUp keys flip the pages. Multi-page format files work only when the .fmt
file is opened with SET FORMAT.

TIP To design a custom form, use CREATE/MODIFY SCREEN to create a
Sformat file (.fmt) that consists of @ commands.

Activate the format file with SET FORMAT TO < .fint filename>. You can
append new records or revise existing ones from an .fmt file using any of the full-
screen editing commands such as EDIT and APPEND.

Examples
To display the information in the first record of the Client database file:

. USE Client
. CLEAR
. @5,0 SAY TRIM(Firstname) + " " + Lastname

As you enter each command, the resulting expression is displayed on your screen. For
a more readable display, specify the spaces in quotes as part of the expression, as
shown above. The results displayed on your screen should be the following:

Fred Wright

To provide a list of choices that a user may select in a program file, use the @M
PICTURE function. To select a day of the week:

SET STATUS ON
Day_of_wk = "Any"
@ 12,20 SAY "Select the day of the week " GET Day_of_wk;
PICTURE "@M Mon,Tue,Wed,Thu,Fri,Sat,Sun";
MESSAGE "Press SPACE to view values and RETURN to select."
READ

In this example, "Any" is initially displayed in the input field. As soon as the cursor
moves into the field, however, the display changes to "Mon", which is the first item in
the list. "Any" is never displayed again since it is not in the list.

Chapter 2, Commands 45

@
@...CLEAR

Use the VALID clause along with a user-defined function to insure the integrity of
input. Continuing with the previous example, enter an amount into a variable called
Mrate. Mrate must equal 1, 2, or 3 for a weekday, Saturday, or Sunday, respectively.

Mrate = 0
@ 14,20 SAY "The rate is " GET Mrate PICTURE "9";
VALID Rcheck();
ERROR "Weekday = 1, Saturday = 2, Sunday = 3"
READ
RETURN
FUNCTION Rcheck
DO CASE
CASE Day_of_wk <> "S" .AND. Mrate =1
RETURN .T.
CASE Day_of_wk = "Sat" .AND. Mrate = 2
RETURN .T.
CASE Day_of_wk
RETURN .T.
ENDCASE
RETURN .F.

"Sun" .AND. Mrate =3

I

In the above example, the VALID condition calls the user-defined function Rcheck().
If the validity of the input is correct, Rcheck() returns true (.T.). If Rcheck() is false
(.F.), the error message Weekday = 1, Saturday = 2, Sunday = 3 appears and the user
is not allowed to exit the field until the error is corrected.

See Also

277, ACTIVATE WINDOW, APPEND, COL(), CREATE/MODIFY SCREEN, EDIT,
MODIFY COMMAND, READ, ROW(), SET COLOR, SET CONFIRM, SET
CURRENCY, SET DELIMITERS, SET DEVICE, SET FIELDS, SET FORMAT, SET
INTENSITY, SET POINT, SET SEPARATOR, SET WINDOW OF MEMO

@...CLEAR

@...CLEAR clears a portion of the screen or of the active window.

Syntax
@ <rowl>, <coll> CLEAR [TO <row2>, <col2>]

Usage

<row 1>, <coll> are the coordinates of the upper left corner of the area that you want
to clear, and <row2>, <col2> are the coordinates of the lower right corner.

46 Language Reference

This command erases the area of the screen starting at <row1>, <col1> up to and
including <row2>, <col2>. If you omit the CLEAR TO <row2>, <col2> phrase, the
line beginning with <row1>, <coll> is cleared to the end of the line. If you omit TO
<row2>, <col2> only, but specify the CLEAR keyword, the screen or active window is
cleared from <row1>, <col1> to the bottom right corner.

Example
To clear the area of the screen from coordinates 2,9 to 14,39:

. @2,9 CLEAR TO 14,39

See Also
@...FILL, CLEAR

@...FILL

@...FILL allows you to change the colors of a specific rectangular region on your
color terminal or active window.

Syntax

@ <rowl1>,<coll> FILL TO <row2>,<col2>
[COLOR <color attribute>]

Usage

This command changes the color of the text in the defined region. <row1>,<coll> are
the coordinates of the upper left corner of the region, and <row2>,<col2> are the
coordinates of the lower right corner.

In place of <color attribute>, you must provide color codes for the region. These are
the same codes used by SET COLOR.

You may change the standard foreground and background colors in the area only. This
command affects the display already on the screen. Subsequent commands that write
to this area will use the default screen colors, not the colors set with @...FILL.

If you omit the COLOR option, @...FILL clears the rectangular region of the screen
and is equivalent to @...CLEAR.

If you specify coordinates larger than your screen, the Coordinates are off the screen
message appears.

Chapter 2, Commands 47

@...FILL
@...SCROLL

Example

To paint the screen from coordinates 3,10 to 20,70 in red on black and see the text
in that region change color, first issue a LIST MEMORY command to fill the screen
with text:

. LIST MEMORY
. @ 3,10 FILL TO 20,70 COLOR R/N

See Also
@...CLEAR, SET COLOR

@...SCROLL

@...SCROLL shifts the contents of a specified region of the screen up or down, or to
the left or right.

Syntax

@ <rowl>,<coll> TO <row2>,<col2> SCROLL [UP/DOWN/LEFT/RIGHT]
[BY <expN>] [WRAP]

Defaults
@...SCROLL defaults to UP BY 1, without wrapping.

Usage

<row1>,<col1> are the coordinates of the upper left corner of the region, and
<row2>,<col2> are the coordinates of the lower right corner. The characters in this
region of the screen are shifted up or down, left or right, by the number of rows or
columns given in the BY option.

The WRAP option causes the characters that scroll off one edge of the region to
replace the row or column on the opposite side that would otherwise be blank. For
example, without WRAP, SCROLL LEFT BY 2 shifts two columns of characters off
the left edge of the region and leaves two blank columns against the right edge. With
SCROLL LEFT BY 2 WRAP, two columns of characters scroll off the left edge of the
region and appear back on the right, as if characters wrapped around within the region.

If a window is active, row and column positions are relative to the active window.

48 Language Reference

@. . SCROLL
I

The numeric expression in the BY option can be from -32,767 to +32,767. If you
provide a negative number, the direction of the scrolling is reversed, so SCROLL
LEFT BY -3 and SCROLL RIGHT BY 3 are the same. If <expN> is 0, no rows or
columns are scrolled.

See Also
@...TO, ACTIVATE WINDOW, DEACTIVATE WINDOW, DEFINE WINDOW

@...T0

@...TO draws a box on the screen or active window with single lines, double lines, or
specified characters.

Syntax

@ <rowl>,<coll> TO <row2>,<col2>
[DOUBLE/PANEL/<border definition string>]
[COLOR <color attribute>]

Defaults

The default border is a single line, unless it has been changed by the SET BORDER
command.

The default color is the NORMAL color, which can also be changed by specifying the
NORMAL keyword of the SET COLOR command.

Usage

<row1>,<coll> are the coordinates of the upper left corner of the box, and
<row2>,<col2> are the coordinates of the lower right corner.

If the row coordinates are the same, a horizontal line is drawn. If the column
coordinates are the same, a vertical line is drawn.

Defining a border with the @...TO command options overrides the SET BORDER
default setting.

NOTE Alithough @...TO does not produce streaming output, it may affect the
positioning of subsequent output. For example, changing the current cursor
position on the screen with an @...TO command affects where a later ?/??
command will appear.

Chapter 2, Commands 49

Options
DOUBLE draws a double-line box rather than the default single-line one.

PANEL displays a solid highlighted border. The entire rectangular border is in inverse
video.

<border definition string> is a list of character strings (or numbers) used to define a
border. The character strings must be delimited, must be separated by commas, and
must appear in the following order:

t,b,Lr.tl,tr,bl,br
The letters stand for the following attributes:

t — top tl — top left corner

b — bottom tr — top right corner

1 - left bl — bottom left corner
r — right br — bottom right corner

If you specify only the first attribute (t), the remaining attributes default to the same
value.

You omit an attribute by using a comma in its place if it comes at the beginning of the
list, or by simply omitting it if it comes at the end. Omitting an attribute leaves it
unchanged from its previous setting.

If you use numbers instead of character strings, use the decimal value of the character.
Note that the ASCII code values (decimal O through 255) are listed in Appendix G.
You may also enter numbers as the argument of the CHR() function. The numbers
should not be delimited.

COLOR — In place of <color attribute>, you must provide color codes for either
foreground, background, or both. These are the same codes used by SET COLOR. If
you used the PANEL option, the window will be drawn in the foreground color only.
If you do not provide color codes, this command uses the NORMAL colors of the SET
COLOR command.

Programming Notes

You can use the @...TO command from the dot prompt or in a command or format
file.

In order to not overwrite the box with a field that is wider than the window, use the
S<n> function of the @ command to limit the size of the input area on the screen. The
S<n> function allows horizontal scrolling within the input area.

To print a box, use the DEFINE BOX command.

50 Language Reference

@ T0
ACCEPT

Example

To draw a double line box from screen coordinates 1,10 to 15,40 with color attributes
of black on cyan:

. @1,10 TO 15,40 DOUBLE COLOR N/BG

See Also
@, @...CLEAR, @...FILL, CHR(), DEFINE BOX, SET BORDER, SET COLOR

ACCEPT

ACCEPT is used primarily in command files to prompt a user for keyboard entry. It
creates a character memory variable in which it stores the keyboard entry. Terminate
data entry with 1.

Syntax
ACCEPT [<prompt>] TO <memvar>

Usage

The <prompt> may be a character-type memory variable, a character string, or any
valid character expression. If it is a character string, it must be delimited by single
quotes (' '), double quotation marks (" "), or square brackets ([]).

The keyboard entry does not require delimiters: ACCEPT treats all user input as
character-type data.

If .1 is entered in response to the ACCEPT command, the content of the memory
variable is null (without any contents, or ASCII 0).

A maximum of 254 characters can be entered into a variable with ACCEPT.

Programming Note

Unless SET ESCAPE is OFF, pressing Esc in response to an ACCEPT will terminate
a program.

Chapter 2, Commands 51

ACCEPT
ACTIVATE MENU

Example

To prompt the user to "Enter your social security number:" and store the keyboard
entry in the Ssno memory variable:

. ACCEPT "Enter your social security number:" T0 Ssno
Enter your social security number:

See Also
@, INPUT, READ, SET ESCAPE, STORE, WAIT

ACTIVATE MENU

This command activates an existing bar menu and displays it for use.

Syntax
ACTIVATE MENU <menu name> [PAD <pad name>]

Usage

This command activates a previously defined menu and displays it on the screen over
any existing display. If you use the pad name with the ACTIVATE MENU command,
the highlight bar appears in that pad. Otherwise, the first pad defined is highlighted.

The last activated menu is the only active menu. Use the — and the « keys to move
between the menu pads. You access the pads in the order in which they were defined.
An active menu is deactivated by activating another menu, by pressing Esc, or by the
DEACTIVATE MENU command.

When one menu activates another, the first menu is suspended until the second is
deactivated.

Example
. ACTIVATE MENU Main PAD View

Activates the menu called Main and places the cursor in the first pad called View. The
DEFINE PAD example in this chapter shows how to set up Main and View.

See Also

DEACTIVATE MENU, DEFINE MENU, DEFINE PAD, MENU(), ON PAD, PAD(),
SHOW MENU

52 Language Reference

ACTIVATE POPUP
ACTIVATE SCREEN

ACTIVATE POPUP

This command activates a previously defined popup for use.

Syntax
ACTIVATE POPUP <popup name>

Usage

Only one pop-up menu can be active at one time. If you have an active pop-up menu,
it is deactivated when you issue a subsequent ACTIVATE POPUP command, press
Esc, or use the DEACTIVATE POPUP command.

When one pop-up menu activates another, the first pop-up menu is suspended until the
second is deactivated.

Example
This command activates a previously defined pop-up menu:

. ACTIVATE POPUP Exit_pop

See Also

BAR(), DEACTIVATE POPUP, DEFINE POPUP, POPUP(), PROMPT(), SHOW
POPUP

ACTIVATE SCREEN

ACTIVATE SCREEN restores access to the entire CRT screen, rather than to the limits
of the recently active window. The most recently active window remains on the
screen, but it can be overprinted, scrolled up, or cleared.

Syntax
ACTIVATE SCREEN

Usage

ACTIVATE SCREEN sends output to the full screen display instead of to the active
window. You do not lose the active window’s image, nor do you need to define a
window equal to the coordinates of the full screen.

You can use ACTIVATE SCREEN to keep a window’s image available for reference
while working with full-screen code. Pop-up menus also remain in their correct
relative positions.

Chapter 2, Commands 53

ACTIVATE SCREEN
ACTIVATE WINDOW

ACTIVATE SCREEN is also used to place text outside a window, as when an extra
message might be needed for a user. In this case, you use ACTIVATE WINDOW after
temporarily using ACTIVATE SCREEN to redirect screen output.

Although the active window remains in the foreground, its content is not being
updated. The output it would be delivering has been redirected to the full screen,
including the area occupied by the window. When output is being sent to the full
screen, text can overwrite the window or cause it to scroll off the screen. The CLEAR
command can completely clear the screen.

The window remains on the screen until deactivated. If you then reactivate the
window, it will cover any full screen text that occupies its position.

See Also

@...FILL, ACTIVATE WINDOW, CLEAR, DEACTIVATE WINDOW, DEFINE
WINDOW

ACTIVATE WINDOW

The ACTIVATE WINDOW command activates and displays a defined window from
memory, and directs all screen output to that window.

Syntax
ACTIVATE WINDOW <window name list>/ALL

Usage

To use the ACTIVATE WINDOW command, you must have at least one defined
window in memory. Several windows can be present on the screen, but only one
window can be active; therefore, if you provide a list of window names, the last
window in the list is the active one.

When you use the ALL option, all defined windows currently in memory are displayed
in the order they were defined. The borders around each window use the format you
established when you defined the window. If you do not specify a border string when
you define the window, then the SET BORDER setting determines the borders of the
window.

Example

This command activates a previously defined window named W1:

. ACTIVATE WINDOW W1

See Also

CLEAR WINDOW, DEACTIVATE WINDOW, DEFINE WINDOW, FUNCTION,
MOVE WINDOW, RESTORE WINDOW, SAVE WINDOW, SET BORDER

54 Language Reference

APPEND

APPEND

APPEND allows you to add new records to the end of the active database file.

Syntax
APPEND [BLANK]/[NOORGANIZE]

Usage

APPEND places you in the full-screen data entry mode. One new record at a time is
presented in a screen form for data entry. If no format has been specified, a default
form is displayed.

You terminate the process by pressing .J or Esc immediately when a new record is
presented. If you move to a new record and press Ctrl-End, a blank record is added to
the file.

The PgUp key moves the cursor to previous records, enabling you to edit them. If an
index is open, they will be in index order. Otherwise, they will be in record order. The
PgDn key moves forward through the records, and returns to the APPEND mode if
you move beyond the last record.

You can move back and forth between the APPEND screen and its menu bar by
pressing F10.

To enter a memo field, position the cursor on the word memo and press Ctrl-Home.
You leave the field by pressing Ctrl-End. If you are using the dBASE IV editor to
work in a memo field, you use the same control keys as those for MODIFY
COMMAND.

APPEND allows you to add records to a single database file only. Using a format file,
it is possible to @...GET fields from several related files. Using APPEND with a
format file like this does not add records to unselected files. You may, however, use
the READ command with the format file to add information to records in several files
simultaneously. To add a record to the ends of several files, you must first APPEND a
BLANK record to the files, then READ.

Options

The BLANK option adds a blank record to the end of the database file, but the full-
screen mode is not entered. The BLANK record becomes the current record.

NOORGANIZE brings up a menu bar without the Organize menu. Organize menu
options to sort, index, and remove records are therefore unavailable.

TIP All active indexes (including .mdx tags) are updated as records are
appended.

Chapter 2, Commands 55

APPEND
APPEND FROM

Examples

To enter the full-screen data entry mode and begin APPENDing records to the Client
database file:

. USE Client
. APPEND

To add one blank record to the Client database file without entering the full-screen
data entry mode:

. APPEND BLANK

See Also

@...GET, BROWSE, EDIT, SET CARRY, SET FORMAT, SET WINDOW OF
MEMO

APPEND FROM

APPEND FROM copies records from an existing file to the end of the active database
file. The FROM file does not have to be a dBASE IV file.

Syntax

APPEND FROM <filename>/?
[[TYPE] <file type>] [REINDEX] [FOR <condition>]

Defaults

The filename must include the drive designator if the file is not on the default drive,
unless a path is set to that drive.

If you do not use [[TYPE]<filename>] and do not provide a file extension as part of
the filename, dBASE IV assumes a .dbf extension.

If you do not provide a file extension as part of the filename, but specify SDF or
DELIMITED, dBASE IV assumes a .txt extension. dBASE IV also assumes that other
file types have the default extensions supplied by their respective software packages.

56 Language Reference

APPEND FROM

Usage
If the FROM file is a dBASE IV database (.dbf) file:

m Records marked for deletion are appended and are not marked for deletion in the
active database if SET DELETED is OFF. If SET DELETED is ON, only records
not marked for deletion are appended.

a Only field names found in both files are appended. They do not have to be in the
same order.

a Do not specify a file type.

If a field in the FROM file is larger than the same field in the active database, excess
characters are lost, and no numeric data is appended. If the file being APPENDed to
has an open index file, the index is automatically updated.

You can test a FOR condition only for those fields that occur in both files with the
same name. Further, with a FOR clause, a record in the FROM database file is added
to the active database file only if the resulting record satisfies the FOR criteria.
Because the FOR condition is evaluated for the new record instead of for the FROM
database file record, some results may not be what you expect. Following are two
examples to illustrate this point.

Example 1:

The value returned for the RECNO() function in the statement APPEND FROM
Newdbf FOR RECNO() = 100 is the next available record number in the current
database file, not the record number in the FROM database file. In this example,
arecord is appended only if the current database file has exactly 99 records.

Example 2:

If you attempt to append records in the Test database file that are not marked for
deletion with the statement APPEND FROM Test FOR DELETED(), you will actually
be testing the target file (the one currently open) for its deleted status. Therefore no
records will be appended.

Options
The options for <file type> are:

s DBASEII — dBASE II® database file.

s DELIMITED — Delimited Format ASCII file. Data is appended character by
character starting on the left. Each record must end with a carriage return and line
feed. A comma separates each field and, in addition, double quotation marks
surround character data unless you specify another delimiter. This is the same as
DELIMITED WITH ".

s DELIMITED WITH BLANK works with files containing fields separated by one
space. No commas separate the fields, and each record ends with a carriage return
and line feed.

Chapter 2, Commands 57

APPEND FROM

s DELIMITED WITH <delimiter> works with Delimited Format ASCII files where
the field’s delimiter character is other than the standard comma. Character strings
are enclosed in double quotation marks, and each line ends with a carriage return
and line feed.

m DIF — VisiCalc file format. The VisiCalc rows convert to records, and the columns
convert to fields.

s FW2 — Framework II® database or spreadsheet frame.
m RPD — RapidFile® data file.

s SDF — System Data Format ASCII file. Also known as a fixed-length file. Data is
appended character by character starting on the left. Each record in the FROM file
is the same length and ends with a carriage return and line feed, and individual
fields are not delimited.

a SYLK — MultiPlan spreadsheet format in row major order. The MultiPlan rows
convert to records, and the columns convert to fields. dBASE IV will not APPEND
FROM a SYLK file saved in column major order.

m WKS — Lotus 1-2-3 spreadsheet format, release 1A. The Lotus 1-2-3 rows
convert to records, and the columns convert to fields. The file begins with the cell
in the upper left corner of the spreadsheet.

Blank rows in any spreadsheet type are converted to blank records in the database file.

When using APPEND FROM to read any of the supported spreadsheet formats, keep
in mind that this command expects the incoming data in a format that matches the
database file structure. This means that you should have stored the spreadsheet in row
major (as opposed to column major) order, and that you should remove column
headers before attempting to read the data into dBASE IV. However, APPEND FROM
will store row names as long as the database file structure is designed with them in
mind. Lotus 1-2-3 files should not have leading blank rows or columns. With this type
of file, you should justify data in the upper left corner before using APPEND FROM.

REINDEX rebuilds any open non-controlling indexes after all new records to the
database file are added. If you omit REINDEX, non-controlling indexes are updated
after each record is added. The Options section in the BLANK command entry of this
chapter discusses index updating, index rebuilding, and performance tuning with the
REINDEX option.

In a multi-user environment, you can only use REINDEX if the database is opened for
exclusive use.

TIP Ifyou are APPENDing FROM a file for which dBASE 1V assumes a
particular extension and your file does not have an extension, include a period
after the filename.

58 Language Reference

APPEND FROM
APPEND FROM ARRAY

Special Cases

Use the IMPORT command to convert PFS:FILE, and Lotus release 2.x formats to
dBASE IV format. You can also use IMPORT to convert dBASE II, Framework 11,
Framework III®, Framework IV™, and RapidFile files to dBASE IV files.

dBASE IV date fields can APPEND FROM character fields, if the data is in the proper
date format. Conversely, character fields in the proper format and size can APPEND
FROM date fields. From text files, dates can only be APPENDed FROM in the form
YYYYMMDD, not delimited (where YYYY is the year, MM is the month, and DD is
the day).

A file that was exported with COPY TO...DELI WITH, cannot be used as input for
APPEND FROM...DELI WITH ,.

Example
To APPEND FROM a RapidFile database named Contacts into the Clients database file:

. USE Client INDEX Cus_name
. APPEND FROM Contacts.rpd TYPE RPD

This example opens Cus_name.ndx to ensure the integrity of the index. Otherwise,
Cus_name.ndx would have to be REINDEXed the next time you open it.

See Also
BLANK, COPY, DELETED(), IMPORT, SET DELETED

APPEND FROM ARRAY

APPEND FROM ARRAY adds records to a database file from elements in an array.

Syntax
APPEND FROM ARRAY <array name> [REINDEX] [FOR <condition>]

Usage

The contents of each row in the named array may become a new record in the current
database file.

For each row in the array, the contents of the first column are replaced into the first
field, the contents of the second column are replaced into the second field, and so on.
This process continues until there are either no more array columns or no more fields.
All field types, with the exception of the memo field, can be replaced with array
information.

Chapter 2, Commands 59

APPEND FROM ARRAY

If an array has more columns than the database has fields, the excess array columns
are ignored. If the database file has more fields than the array has columns, the excess
fields remain empty.

If the array element and field have different data types, this command converts the
element variable to the field’s data type before writing it. If you do not want this data
type conversion, verify that each element in the array must be the same data type as
the field into which it will be replaced.

If you use the FOR clause, the condition is evaluated before each row in the array is
added to the database file. A row is APPENDed only if the condition would evaluate
to true (.T.) against the new record. If the condition is false (.F.), the row is skipped
and the next row is processed.

To test for a condition in a column of array elements, specify the database field name
corresponding to the array column number, not the column number itself. The
Examples section clarifies this situation.

You must DECLARE the array and STORE new information to its elements, if you
want values other than .F., before you can APPEND from it.

The REINDEX option rebuilds any open non-controlling indexes after all records have
been changed. See the BLANK command entry in this chapter for more information.

In a multi-user environment, you can only use REINDEX if the database is opened for
exclusive use.

Examples

To APPEND FROM an ARRAY into the Transact database file, first establish the
array:

. DECLARE Newdata[l,5]
. Newdata[l,1] = "M0O0001"

M00001
. Newdatal[l,2] = "88-100"
88-100
. Newdata[l,3] = DATE()
03/01/87

. Newdatall,4] = .F.
.F.
. Newdatal[l,5] = 125.00
125.00
. USE Transact
. APPEND FROM ARRAY Newdata
1 record added

60 Language Reference

APPEND FROM ARRAY
APPEND MEMO

This example demonstrates how to test for a condition in a column of array elements:

DECLARE Temp[5, 111] && There are 11 fields in the Travel database
Temp[1,1] = "Larry"

Temp[2,1] = "Larry"
Temp[3,1] = "Lenny"
Temp(4,1] = * "
Temp[5,1] = "Lonny"
USE Travel && First field is named Firstname

* Append only records from the array that have non-blanks.
APPEND FROM ARRAY Temp FOR Firstname = "L"
4 records added

See Also
APPEND, COPY TO ARRAY, DECLARE, STORE

APPEND MEMO

APPEND MEMO reads a file into a named memo field in the current record.

Syntax
APPEND MEMO <memo field name> FROM <filename> [OVERWRITE]

Defaults

If you do not specify a filename extension, the default extension .txt is assigned.

Usage
APPEND MEMO can read any file into a memo field. The entire file is read and
added to the existing contents of the memo field.

If the existing memo field is larger than 64K, the message Original memo cannot be
larger than 64K is displayed. If the existing memo is less than 64K, a file of any size
can be appended.

When you use the OVERWRITE option, the existing memo field contents are deleted
before new material is appended. With the OVERWRITE option, there’s no restriction
on the size of the existing memo field.

dBASE IV internal text editor MODIFY COMMAND cannot save memo fields that
are greater than 64K, although it can open and let you view them.

Chapter 2, Commands 61

APPEND MEMO
ASSIST

To edit memo fields greater than 64K, use an external program editor (such as Brief or
Qedit) that does not have a 64K file size limit. Call the external editors with the WP
setting in Config.db.

If you open a memo field with MODIFY COMMAND and cannot save your edited
file, you can delete some text and try to save the file again.

If the named field cannot be found, the message Field not found appears.

If the named field is not a memo field, the message Field must be a memo field
appears.

If the specified filename cannot be found, the message File does not exist appears.

Examples

To APPEND a text file named Newfile.txt to the first record in the Client database file,
first create the text file with the MODIFY FILE command. Save the file with
Ctrl-End. Then, from the dot prompt:

. USE Client
. ? Clien_hist
85-200 08/02/85
(-300-400 BOOK CASE 535.00 1
. APPEND MEMO Clien_hist FROM Newfile
.? Clien_hist
85-200 08/02/85
C-300-400 BOOK CASE 535.00 1
New text begins here

See Also
COPY MEMO, MODIFY COMMAND/FILE

ASSIST

ASSIST gives you access to the dBASE IV Control Center.

Syntax
ASSIST

Usage

ASSIST brings you to the Control Center, from which you can reach the different parts
of the dBASE IV menu system.

The Control Center always opens a catalog. It first attempts to open the most recently
opened catalog in the master catalog. If a catalog is not available, it creates a new
catalog called Untitled.cat.

62 Language Reference

ASSIST
AVERAGE

To begin using the menu system, follow the instructions on the screen.

The Control Center is a gateway to six design screens, each represented by a panel in
the Control Center. These design screens can also be reached using the CREATE,
CREATE/MODIFY QUERY/VIEW, CREATE/MODIFY SCREEN, CREATE/
MODIFY REPORT, CREATE/MODIFY LABEL, and CREATE/MODIFY
APPLICATION commands.

You may also view, edit, and add data, as with BROWSE, EDIT, and APPEND; run
reports and labels, as with REPORT FORM and LABEL FORM; execute programs
and other files, as with DO, SET VIEW, and SET FORMAT; and enter the program
editor, as with MODIFY COMMAND/FILE.

To leave the Control Center and return to the dot prompt, press Esc; or, you can press
Alt-E to open the Exit menu, then select the Exit to dot prompt option.

See Also

The Control Center is described in Getting Started with dBASE IV and in Using
dBASE IV. Please refer to these manuals for more information.

AVERAGE

AVERAGE computes the arithmetic mean of numeric expressions.

Syntax
AVERAGE [<expN list>] [<scope>] [FOR <condition>]

[WHILE <condition>] [TO <memvar list>/TO ARRAY <array name>]
Defaults

All records are averaged unless otherwise specified by the scope or the FOR or
WHILE clause. All numeric fields are averaged unless otherwise specified by an
expression list. The result of AVERAGE is displayed on the screen as long as SET
TALK is ON.

Usage

The number of memory variables specified must be exactly the same as the number of
fields AVERAGEd.

The number of array elements must be at least the same as the number of fields
AVERAGEd.

If you use the TO ARRAY phrase, the array must be one-dimensional. The results are
stored in the named array, in order beginning with the first slot. If there are fewer
results, the remaining array elements remain unchanged.

Chapter 2, Commands 63

AVERAGE
BEGIN/END TRANSACTION

Example
To obtain the average Total_bill for Client_id C00002 in the Transact database file:

. USE Transact
. AVERAGE Total_bill FOR Client_id = "C00002"
.2 records averaged
Total_bill
712.50

See Also
CALCULATE, COUNT, DECLARE, SET HEADING, SET TALK, SUM

BEGIN/END TRANSACTION

BEGIN TRANSACTION and END TRANSACTION define a transaction — a series
of commands treated as a single unit of work. Transaction processing ensures that
either all or none of the commands that affect database file contents are processed.

Syntax

BEGIN TRANSACTION [<path name>]
<transaction commands>
END TRANSACTION

Usage

BEGIN TRANSACTION creates a log file and starts transaction recording. The
transaction remains active until an END TRANSACTION, ROLLBACK, CANCEL,
or QUIT is issued. While the transaction is active, dBASE IV logs records that are
added or changed, and files that are created.

In a program, issuing a SUSPEND inside a transaction does not interrupt the
transaction, but suspends the program that is executing inside the transaction.

The RESUME command continues the program.

In a program, the ROLLBACK command transfers control to the command
immediately following the END TRANSACTION command. Any commands between
ROLLBACK and END TRANSACTION are ignored.

The transaction log file is named Translog.log on a stand-alone system, and <computer
name>.log on a local area network. <computer name> is the network name of the
computer that starts the BEGIN TRANSACTION command. If <computer name> is
not available from the network, dBASE IV uses the PROTECT log-in name.

64 Language Reference

BEGIN/END TRANSACTION

By default, the transaction log file is created in the current directory on the current
drive. Use the <path name> option to specify a different directory. If the current
directory is on a network file server, you can improve network performance by
specifying a local workstation directory for the transaction log file.

When used in a program, BEGIN TRANSACTION and END TRANSACTION must
be used together, must be in the same procedure, and must appear together in the same
nested command block in a procedure. Therefore, END TRANSACTION cannot be
conditional.

Unlike other structured commands, transactions cannot be nested. You must complete
a transaction before you can begin another.

The COMPLETED() and ROLLBACK() functions are used with transaction
processing to test the outcome of transactions.

Use COMPLETED() to test whether a transaction has completed successfully.
COMPLETED() is true (.T.) unless a transaction is active. CANCEL performs a
ROLLBACK and restores the database to its pre-transaction state. If the transaction is
incomplete use the ISMARKED() function to check the database.

ROLLBACK() tests whether a ROLLBACK command was successful. ROLLBACK()
returns true (.T.) by default. If an error occurs during ROLLBACK, it is set to false
(.F.) until a subsequent ROLLBACK is successful or you issue a RESET command.

If ROLLBACK is not successful in restoring a group of database files, use the
command to restore each file individually.

Commands Not Allowed in Transactions
While a transaction is active, you cannot use the following commands:

CLEARALL

CLOSE ALL/DATABASE/INDEX
CONVERT

CREATE VIEW
DELETE FILE

ERASE

INSERT

MODIFY STRUCTURE
PACK

RENAME

ZAP

Attempting to use any of these commands during a transaction results in an error
message.

Chapter 2, Commands 65

BEGIN/END TRANSACTION

The following commands can be used while a transaction is active unless they close
open files or overwrite an existing file:

COPY TO <newfile>[STRUCTURE EXTENDED)]
COPY STRUCTURE TO <newfile>

CREATE [FROM]

EXPORT TO <filename>

IMPORT FROM <filename> INDEX...TO <newfile>
JOIN...TO <newfile>

SET INDEX TO

SORT...TO <newfile>

TOTAL...TO <newfile>

USE

If a command attempts to overwrite a file or close an open database or index file,
which affects the transaction, an error message appears.

If you opened a file with the NOLOG option, it will not be part of the transaction log
and it may be opened and closed without generating an error message or affecting the
transaction log.

The INDEX command cannot be used if it overwrites an existing .ndx file, .mdx file,
or .mdx tag, or if any nonproduction index file is currently open.

The UNLOCK command is a special case; while it does not produce an error message,
it has no effect during a transaction.

TIP File and record locks gained during an active transaction are not
released until the transaction is completed. In a multi-user environment, you can
avoid locking data for extended periods if your programs finish data entry
before beginning a transaction. Include only the necessary commands within the
transaction, and complete it as soon as possible so that the locks can be
released.

66 Language Reference

BEGIN/END TRANSACTION

Examples

The following routines, Invoice and Err_proc, are examples of transaction processing
with error checking and handling:

PROCEDURE Invoice

SET REPROCESS TO 15

ON ERROR DO Err_proc

BEGIN TRANSACTION
USE Invoice ORDER Acct_no
SCAN FOR .NOT. Invoiced

ENDSCAN

END TRANSACTION

[F .NOT. ROLLBACK()
@ 21,15 SAY "The ROLLBACK was not successful. You must restore"
@ 22,15 SAY “"from the backup before continuing."

ENDIF

ON ERROR

RETURN

PROCEDURE Err_proc
choice =" "
DO CASE
CASE ERROR() = 108 && File in use by another
@ 21,15 SAY "One of the files that you need is in use by another."
@ 22,15 SAY "Do you want to try to use it again? (Y/N)";
GET choice
READ
@ 21,15 CLEAR TO 22,65
IF UPPER(choice) = "Y"
RETRY
ELSE
IF COMPLETED()
*— Error did not occur during a transaction.
@ 21,15 SAY "The file in use by another is not part of a
transaction.”
@ 22,15 SAY "Returning to the main menu."
RETURN TO MASTER
ENDIF
@ 21,15 SAY "Rolling back your entries. Please wait.."
ROLLBACK
ENDIF
RETURN TO MASTER
CASE ERROR() = 109
*** Similar type of routine.
ENDCASE
RETURN

Chapter 2, Commands 67

BEGIN/END TRANSACTION
BLANK

See Also

CHANGE(), COMPLETED(), ISMARKED(), RESET, ROLLBACK, ROLLBACKJY),
USE

BLANK

BLANK fills fields and records with blanks.

Syntax

BLANK [FIELDS <field list>/LIKE/EXCEPT <skeleton>]
[REINDEX] [<scope>] [FOR <condition>] [WHILE <condition>]

Usage

BLANLK fills fields and records with blanks. The blank format is determined by the
data type of the field specified, and the command used to view the data, as shown in
Table 2-5.

Table 2-5 Displayed Values for Blank Data

Field Data Type Browse/Edit ? STORE LIST @SAY
Character

Numeric 0 0 0
Float 0 0 0
Memo memo memo memo
Date 1/ Iy // /1
Logical E FE .F.

NOTE Blank entries in Table 2-5 mean that nothing is displayed to the screen.

After a field or record is blanked, testing the field or record with the ISBLANK()
function returns a logical true.

Using the BLANK command and the ISBLANK() function, you can control
operations on blank data. For example, the commands

CALCULATE AVG(Salary)
and

BLANK ALL FOR Salary = 0
CALCULATE AVG(Salary) FOR .NOT. ISBLANK(Salary)

Language Reference

do not return the same results if the Salary field in some records contains a zero. The
first CALCULATE command sums all Salary fields in the database file and divides the
sum by the number of records in the file. The second CALCULATE command divides
the sum by the total number of records that actually contain salaries greater than zero.
The first CALCULATE command assumes that a zero represents no salary, a literal
zero. The second CALCULATE command assumes that zeroes are really nulls,
unknown values.

BLANKIing a record that previously contained data is similar to APPENDing a
BLANK record. BLANK is also equivalent to the Blank record option in the
Records menu of the EDIT and BROWSE commands. All three methods write a
record that contains blank values. This cannot be done with commands such as
REPLACE. The following commands do not fill a field that previously contained data
with blanks:

REPLACE Salary WITH 0
REPLACE Switch WITH .F.

You can, however, blank out fields with the BLANK command, for example:
BLANK FIELDS Salary, Name, Switch

If you BLANK a field that is contained in the key expression of an index, dBASE IV
must also adjust all open indexes that use this field as part of their key expressions.
dBASE IV can either update the indexes, by changing only those entries in the index
that are affected, or rebuild the index completely, as if you issued an INDEX ON
command with the key expression.

Updates to the index are done after each record is BLANKed. Some forms of the
BLANK command, such as using a FOR clause or using BLANK without a WHILE
or <scope>, imply that only one record is changed. After the single change, all open
indexes containing the blank field in the key expression are updated.

Rebuilding the index, on the other hand, is done only after multiple records are
BLANKed. The rebuilding is done after all the changes are complete. Multiple records
can be BLANKed by using a WHILE clause or providing a scope such as ALL.

Although many indexes may be open at one time, such as all the index tags contained
in an open .mdkx file, only one index controls the order of the records displayed. This
index is the controlling index. Because the controlling index determines how records
are displayed and accessed, dBASE IV treats this index differently than other, non-
controlling indexes. Based on an optimization scheme, dBASE IV determines whether
the controlling index should be updated or rebuilt. If it is updated, entries in the
controlling index are rewritten after each record is changed. If it is rebuilt, all changes
are made to the database file, and then the index file or tag is created anew.

Although you cannot state whether the controlling index should be updated or rebuilt,
you can choose to rebuild the non-controlling indexes by using the REINDEX
keyword of the BLANK command. Using REINDEX, all open, non-controlling
indexes of the database open in the current work area that are affected by the BLANK
command will be rebuilt once the BLANK command is complete.

Chapter 2, Commands 69

BLANK
BROWSE

You can optimize performance by using or omitting the REINDEX command.
Typically, if you are changing only one or a few records, it is faster to omit REINDEX
and allow the open, non-controlling indexes to be updated after each record is
BLANKed. If you are changing many records, as with a BLANK NEXT 100, you
might issue REINDEX, allowing the records to be BLANKed and the indexes to be
rebuilt as a last step.

If you are developing an application, you may want to test commands that accept the
REINDEX option for performance. Depending on the number of records in a file, the
number of indexes, and the number of changes to the file, using or omitting the
REINDEX keyword may speed up processing time.

Special Case

You cannot BLANK any fields that are designated read-only, as with the PROTECT or
USE NOUPDATE commands, or with the /R option of the BROWSE command.

In a multi-user environment, you can only use REINDEX if the database file is opened
for exclusive use.

See Also
ISBLANK()

BROWSE

BROWSE is a full-screen, menu-assisted command for editing and appending records
in database (.dbf) files and views.

Syntax

BROWSE [NOINIT] [NOFOLLOW] [NOAPPEND] [NOMENU] [NOORGANIZE]

[NOEDIT] [NODELETE] [NOCLEAR] [COMPRESS] [FORMAT]
[LOCK <expN>] [WIDTH <expN>] [FREEZE <field name>]
[WINDOW <window name>] [FIELDS <field name 1> [/R]
[/<column width>])

/ <calculated field name 1> = <expression 1>

[,<field name 2> [/R] [/<column width>]

/ <calculated field name 2> = <expression 2>] ...]

NOTE The /R and /<column width> options require that you enter the foward
slash (/).

70 Language Reference

BROWSE

Defaults

If a database file or view is not in USE before you BROWSE, the command will
prompt you to enter a database filename.

Calculated fields are always read-only.

Browse will use the active format file (.fmt) when accessed from EDIT via F2 Data or
from the Control Center.

Usage

BROWSE displays records from database files or views in tabular form. All fields are
displayed in the order specified by the file structure or view definition, or in the order
listed after the FIELDS option.

If a file has been PROTECTed, you are allowed to read and edit its field information
only if your access level gives you the privilege. Otherwise, the Unauthorized Access
Level message is displayed when you execute BROWSE.

You can change from BROWSE to EDIT by pressing F2 Data. You can transfer to
query design by selecting Transfer to Query Design from the Exit menu or by
pressing Shift-F2 Design.

You can edit all fields except calculated fields or read-only fields. If the changes you
make to other fields affect any calculated fields, the calculated fields are recalculated
and redisplayed. Calculated fields exist only during a BROWSE session unless they
have been listed in a SET FIELDS TO command.

If an index file is active, editing a key field value repositions the record according to
its new key value in the index.

You can also add records to the active file or view. Move the cursor to the bottom of
the file and press {. A prompt asks if you want to add records to the file. If you answer
Y, BROWSE goes to APPEND mode and allows you to add a record to the file. You
can also add records to a currently selected database file contained in a view.

Press F10 to activate the BROWSE menu bar. The BROWSE menus are described
fully in Getting Started with dBASE IV and Using dBASE IV. Please refer to these
manuals for more information.

If you call BROWSE from the dot prompt, you return to the dot prompt when you exit
BROWSE. In .prg files, you return to the next statement after the BROWSE
command.

Options

NOINIT allows the command line options that you used in the last BROWSE
command to be used again. It instructs the BROWSE command not to reinitialize the
BROWSE table, but to reuse the table from the most recent BROWSE instead.

Chapter 2, Commands n

BROWSE

NOFOLLOW affects only indexed files. Ordinarily, editing a key field value
repositions the record according to its value in the index, and the record remains the
current one. If you issue NOFOLLOW before changing the field’s contents, the record
is repositioned, but the record that took its original place in the file order becomes the
current record.

NOAPPEND prevents you from adding new records to the current file.

NOMENU prevents access to the menu bar and keeps it from being displayed. The
BROWSE table is moved up to line 0, so you gain one extra display line.

NOORGANIZE brings up a menu bar without the Organize menu. Organize menu
options to index, sort, and remove records are therefore unavailable. You cannot use
both NOORGANIZE and NOMENU in the same BROWSE.

NOEDIT makes all fields in the table read-only. You can still add records to the file.
You can also mark records for deletion.

NODELETE prevents you from deleting records.
NOCLEAR leaves the BROWSE table on the screen after you exit BROWSE.

COMPRESS slightly reduces the table format to allow two more lines of data to
appear on the screen. The column headings are placed on the top line of the table
border, and no line separates the headings from the data. On a 25-line screen,
BROWSE presents up to 17 records if you don’t use the COMPRESS option, but up to
19 records with COMPRESS. COMPRESS is ignored in EDIT mode.

FORMAT instructs BROWSE to use the @...GET command options specified in the
active format (.fmt) file. All @...GET command options except the positioning of
fields on the screen are then used by BROWSE. Row and column coordinates are
ignored because BROWSE always positions fields in a table on the screen.

When a format file is active, data is edited according to the database file attributes and
according to the format file specifications. The FORMAT option overrides any
FIELDS list specified because the format file determines which fields are used by
BROWSE in this case.

LOCK specifies the number of contiguous fields on the left of the screen that do not
move when you are scrolling the BROWSE table. <expn> must evaluate to a number
between zero and the total number of BROWSE fields. When you press F3 or F4 to
scroll fields left or right, the number of fields you locked will remain displayed in the
same position on the screen. LOCK 0 will undo all locked fields. LOCK is ignored in
EDIT mode.

WIDTH sets an upper limit on the column widths for all fields in the BROWSE table.
<expn> must evaluate to a number between 4 and 99. The specified WIDTH overrides
the width defined by the database structure. If both WIDTH and the <column width>
options are used for a field, the smaller value of the two will take precedence.

The WIDTH option does not apply to memo fields or logical fields. Numeric and date
fields will not display in a column WIDTH that is less than the width of these fields in
the database file structure.

72 Language Reference

BROWSE

For character fields, WIDTH truncates both data and the column heading if necessary.
For all other data types, WIDTH truncates only the column heading if necessary (data
that would be truncated simply will not appear).

FREEZE confines you to one field or column in the file. If the field has been made
read-only, you may not edit it. Other fields in the field list or database file table can
display on the screen if they fit, but aren’t subject to editing.

FREEZE does not affect the EDIT command. If you switch to EDIT mode, the cursor
will no longer be confined to a particular field. If you switch back to BROWSE mode,
FREEZE will again be in effect.

WINDOW activates a window which then defines an area on the screen used by the
BROWSE table. The rest of the screen remains intact. You can zoom between full-
screen BROWSE and window BROWSE by pressing F9. When you exit BROWSE,
the window is automatically deactivated. If a window is active when BROWSE is
called, BROWSE displays data in that window.

Use FIELDS to choose fields and specify the order in which they appear in the table.
If the file or view is PROTECTed and you do not have access to a field, it is not
displayed. You can also designate a field as read-only, and construct and name
calculated fields to appear in the BROWSE table.

Each calculated field is composed of an assigned field name and an expression that
results in the calculated field value, as Commission=Rate*Saleprice. The field name
you assign becomes the column header for the calculated field in the BROWSE table.
dBASE IV determines the length of a calculated field after evaluating the expression
in the current record, or by determining the longest possible value.

For character fields, the length is set to the length of the result of the calculated field
expression. A minimum length of 10 is used for character fields. The length is set to 1
for logical fields, 8 for date fields, and 20 for numeric fields.

The /R option makes a field read-only. The read-only flag set by PROTECT has
precedence over this option. Calculated fields don’t need /R protection, they are
always read-only.

The <column width> option is a numeric literal that defines the column width of a
field and can be used with each field in the fields list. It must be preceded by a slash
(/) in the command line. It cannot be used with calculated fields.

<column width> can be a value from 4 to 99 for character fields, and from 8 to 99 for
date and numeric fields. <column width> is ignored for memo fields and logical fields.
It is also ignored if it is larger than the WIDTH option, or if the value is less than the
database file structure’s width for date or numeric fields. <column width> can be used
to shrink character fields only. It can never be used to shrink column headings.

Chapter 2, Commands 73

BROWSE

Example

In a program file use BROWSE to display up to seven records from the Transact database
file. Limit the size of the display to seven records by declaring a window called Partial.
Filter the database file for orders that occurred in March. Allow the user to move within
the BROWSE table, but not to make changes to the database file. Finally, leave the
BROWSE table on the screen while another routine utilizes the lower portion of the
screen. Leaving the table on the screen allows the user to see the data.

USE Transact

SET FILTER TO MONTH(Date_trans) = 3 && Filter for March.

GO TOP && Reposition record pointer.
DEFINE WINDOW Partial FROM 2,10 TO 9,60

BROWSE NOAPPEND NOEDIT NODELETE NOCLEAR NOMENU COMPRESS WINDOW Partial
DO Next_prg

The BROWSE command in the example creates a display like the following:

b use transact

. set Pilter to month(date_transd =

. go top

TRANSACT: Record No 5

b define window partial From Z.168 to 9,60

brouse end noedit nodelete noclear nomenu aupmn vindou partial
R AT o IHH

Figure 2-1 BROWSE window

See Also

APPEND, EDIT, PROTECT, SET FIELDS, SET MEMOWIDTH, SET REFRESH,
SET WINDOW OF MEMO

74 Language Reference

CALCULATE

CALCULATE

CALCULATE computes financial and statistical functions with your data.

Syntax

CALCULATE [scope] <option list>

FOR <condition>] [WHILE <condition>]

[TO <memvar list>/TO ARRAY <array name>]
where <option list> can contain any of the following functions:

AVG(<expN>)

CNT(

MAX(<exp>)

MIN(<exp>)

NPV (<rate>,<flows>,<initial>)

STD(<expN>)

SUM(<expN>)

VAR(<expN>)

Default
All records in the active file are processed if a scope is not defined.

Usage

The CALCULATE command handles all records in the active database file until the
scope is completed, or the FOR or WHILE condition is no longer true. The result of
the command is one or more type N (fixed) or type F (floating) numbers, depending
on the data type of the argument.

If you include a FOR clause, each record is evaluated and, if true (.T.), the specified
functions are evaluated and performed.

If you include the TO ARRAY option, the results are stored in the named array which
must be one-dimensional. The array slots are filled in order beginning with the first
one.

If SET TALK is ON, the results appear on the screen. If SET HEADING is ON, the
results are also labeled with the name of the function and the field name.

Options

The financial and statistical optional functions are described below. You can save the
results of these options with the TO option.

NOTE Use the ISBLANK() function to test for blank values.

Chapter 2, Commands 7%

CALCULATE

AVG(<expN>) calculates the arithmetic mean of the values in a particular database
field. It returns a number that is the same data type as the argument.

CNT() counts the records in a database file. The FOR condition is evaluated for each
record. If the condition is true (.T.), the record count is increased by one.

MAX(<exp>) determines the largest number in a particular database field. <exp> is a
numeric, date, or character expression that will normally be the name of a field, or an
expression involving the name of a field.

MIN(<exp>) determines the minimum number in a particular database field. Use it in
the same manner you would use MAX(), except you will determine a minimum value.

NPV (<rate>, <flows>, <initial>) calculates the net present value of the specified
database field.

<rate> is the discount rate represented by a decimal number.

<flows> is a series of signed (+/—) periodic cash flow values. If <initial> is not used,
the series begins with the present period. <flows> can be any valid numeric
expression, but will normally be the name of a field, or an expression involving the
name of a field.

<initial> is a numeric expression whose value represents an initial investment. The
initial value should be a negative number since it represents cash outflow. The output
of NPV() is always type F (floating).

STD(<expN>) calculates the standard deviation of the values in a database field. The
formula for the standard deviation is the square root of the variance. <expN> is a
numeric expression that will normally be the name of a field, or an expression
involving the name of a field. The output of STD() is always type F (floating).

SUM(<expN>) determines the sum of the values in a particular database field. The
FOR condition is evaluated for each record. If the condition is true, the value for that
record is added to the previous total. <expN> is a numeric expression that will
normally be the name of a field, or an expression involving the name of a field.

VAR (<expN>) calculates the population variance of the values in a particular database
field. <expN> is a numeric expression that will normally be the name of a field, or an
expression involving the name of a field. The output of VAR() is a Type F number.

Examples
To find the sum of all invoiced orders in the Transact database file:

. USE Transact
. CALCULATE SUM(Total_bill), CNT() FOR Invoiced TO total, cnt
SUM(Total_bill) CNT()
6965.00 8.00
. 7 "The "+LTRIM(STR(cnt,3))+" invoiced orders total $"+LTRIM(STR(total,8,2))
The 8 invoiced orders total $6965.00

76 Language Reference

CALCULAT
CALL

To calculate the average bill and the standard deviation of the Total_bill field:

. USE Transact
. CALCULATE STD(Total_bill), AVG(Total_bill) TO Mdeviate, Maverage
12 records
STD(Total_bill) AVG(Total_bill)
555.92 840

. Mdeviate = LTRIM(STR(Mdeviate,8,2))
555.92

. Maverage
840.00

. ? "The average bill is $"+Maverage+" with a deviation of $"+Mdeviate+"."
The average bill is $840.00 with a deviation of $555.92.

]

LTRIM(STR(Maverage,8,2))

To find the last date that a transaction took place and the largest order to date:

. USE Transact

. CALCULATE MAX(Date_trans), MAX(Total_bill) TO last_trans, largest
MAX(Date_trans) MAX(Total_bill)

04/10/87 1850.00

. SET CENTURY ON

. ? "The last order was on " + DMY(last_trans) + "."

The last order was on 10 April 1987.

. 72 "The largest order was $" + LTRIM(STR(largest,8,2)) + "."

The largest order was $1850.00.

See Also
AVERAGE, COUNT, SUM

CALL

The CALL command allows you to call binary file program modules loaded in
memory. You must first load the binary program files to memory with the LOAD
command.

Syntax
CALL <module name> [WITH <expression list>]

Chapter 2, Commands

CALL
CANCEL

Usage

The CALL command executes a binary program file that has been placed in memory
with the LOAD command. dBASE IV treats each loaded file as a subroutine or
module rather than as an external program (which could be executed with the RUN
command). As a result, each time you want to execute the program, it is run from
memory without having to be called from a disk. Up to 16 binary program files can be
loaded in memory at one time, and each may be up to 65,500 bytes long.

When you CALL the binary program file, you specify the name of the file without the
.bin extension. You can pass either a character expression, a memory variable, or an
array element of any data type (except memo) to the binary program file. All
parameters are passed as their character representation and end with a null (ASCII
value of zero).

Refer to the LOAD command in this chapter for details on writing the binary program
and for the passing of parameters to the .bin file.

Options

The WITH option will accept a character expression, field name, memory variable, or
array element. You can pass up to seven expressions in the <expression list>. Memory
variables, fields, and elements can be of any type. If you pass an expression, you
cannot change its value, since expressions are passed as literal values. If you pass the
contents of a field or a memory variable (or an array element), you can change its
value.

Example
See the examples for the LOAD command.

See Also
CALL(), LOAD, RUN/!, RUN()

CANCEL

CANCEL stops the execution of a program file, closes all open program files, and
returns dBASE 1V to the dot prompt. CANCEL does not close procedure files.

Syntax
CANCEL

78 Language Reference

CANCEL
CHANGE

Usage

dBASE IV ignores any text on lines in a dBASE program file following CANCEL.
CANCEL is most often used to assist in the process of debugging programs.

In a transaction, CANCEL performs a ROLLBACK.

Example

To stop command processing when an error is found, include CANCEL within an
IF...ENDIF or DO CASE...ENDCASE structure. In the following example, the
Merror memory variable was previously established:

IF Merror & If error is true, command
CANCEL 8& file execution is cancelled.
ENDIF
See Also

DEBUG, DO, RESUME, RETURN, SUSPEND

CHANGE

CHANGE is an alternate syntax for EDIT, a full-screen command you use to display
or change the contents of a record in the active database file or view.

Syntax

CHANGE [NOINIT] [NOFOLLOW] [NOAPPEND] [NOMENU] [NOORGANIZE]
[NOEDIT] [NODELETE] [NOCLEAR] [<record number>]
[FIELDS <field list>] [<scope>] [FOR <condition>] [WHILE <condition>]

Usage

The CHANGE command is identical to the EDIT command. See EDIT for further
information about how to use this command.

See Also
EDIT

Chapter 2, Commands 79

CLEAR

CLEAR erases the screen or currently active window, repositions the cursor to the
lower left-hand corner of the screen, and releases all pending GETs created with the @
command.

Various forms of the CLEAR command also close database files, release memory
variables, field lists, windows, popups, and menus, and empty the type-ahead buffer.

Syntax

CLEAR [ALL/FIELDS/GETS/MEMORY/MENUS/POPUPS/SCREEN/
TYPEAHEAD/WINDOWS]

Usage

You can enter the CLEAR command without an option, or with a single option. If you
enter CLEAR without an option, the command clears the screen and clears all pending
GETS.

Options

ALL closes all open database files and low level-files; releases all memory variables
(except system variables), array elements, popup and menu definitions; and selects
work area 1. Closing the database files also closes their associated index (both .ndx
and .mdx) files, format (.fmt) files, and memo (.dbt) files. CLEAR ALL also closes the
catalog (.cat) file if one is active.

FIELDS releases the fields list created by the SET FIELDS command. CLEAR
FIELDS has no effect unless you used SET FIELDS, or the command was activated
by a view or query file. CLEAR FIELDS automatically performs a SET FIELDS OFF.

GETS releases all @...GETs issued since the last CLEAR ALL, CLEAR GETS, or
READ command. Unless the GETS parameter is redefined using a Config.db file,
dBASE IV permits 128 @...GETs before a CLEAR GETS or READ must be issued.

The maximum number of GETs allowed is 1,023. However, the number you can
actually use is limited by the amount of memory in your computer. (See Getting
Started with dBASE IV for memory limitations.)

The READ command releases all GETs, unless you use the SAVE option. If you use
the SAVE option, you must CLEAR GETs before the maximum number of GETs is
reached.

CLEAR GETS does not release memory variables or array elements.

MEMORY releases all memory variables (except system variables) and array
elements. CLEAR MEMORY, when issued at the dot prompt, performs the same
function as the RELEASE ALL command. When used in programs, however, CLEAR
MEMORY releases all PUBLIC and PRIVATE memory variables and elements, while
RELEASE ALL releases only PRIVATE memory variables and elements declared in
the program currently being executed.

Language Reference

CLEAR
CLOSE

MENUS clears all user menus from the screen and erases them from memory. Use this
command to clear the screen of all menus, and to make the memory used by menus
available for other operations.

POPUPS clears all pop-up menus from the screen and erases them from memory. Use
this command to clear the screen of all pop-up menus, and release the memory used by
pop-up menus. While clearing popups, this command also DEACTIVATEs the active
popup, and clears all ON SELECTION commands associated with the pop-up menus.

SCREENS releases the memory used by screens that you have saved to memory
variables using the SAVE SCREEN command.

TYPEAHEAD empties the type-ahead buffer. Use CLEAR TYPEAHEAD when you
want to make sure that there are no keystrokes in the type-ahead buffer. This is
particularly useful in programs when you want the user to enter information before the
program continues. For instance, place it before CHANGE, READ, WAIT, or similar
commands to ensure that dBASE IV acts upon the correct characters.

WINDOWS removes all windows from the screen and clears them from memory. Any
window definitions that you have not saved before issuing this command are lost. If
you save your window definitions to a disk file, you can RESTORE WINDOWS from
a disk file whenever you wish, and remove them from the screen and memory quickly
with the CLEAR WINDOWS command.

When you issue a CLEAR WINDOWS command, the full screen is restored. Any text
that was covered up by the windows becomes visible.

See Also

@, @...FILL, @...TO, CLOSE, RELEASE SCREENS, RESTORE WINDOW,
SAVE SCREEN, SAVE WINDOW, WAIT

CLOSE

CLOSE is used to close alternate files, database files, format files, index (.ndx and
.mdx) files. and procedure files.

Syntax

CLOSE ALL/
ALTERNATE/DATABASES/FORMAT/INDEXES/PRINTER/PROCEDURE

Usage

CLOSE ALL closes all files of all types, including low-level files, and reselects work
area 1. However, files opened by SET DEVICE TO <filename> or SET PRINTER TO
<filename> will remain open.

Chapter 2, Commands 81

CLOSE
COMPILE

To CLOSE a particular file type, follow the command with the keyword for the file
type, as specified in the syntax.

CLOSE DATABAGSES closes any associated index (.ndx and .mdx) files, memo (.dbt)
files, and format (.fmt) files.

CLOSE FORMAT and CLOSE INDEXES close only the format and index files in the
current work area. CLOSE INDEXES never closes the production .mdx file.

If you want to close only the currently selected database file and its associated files,
issue the USE command, rather than the CLOSE command.

CLOSE PRINTER closes the file opened by SET PRINTER TO FILE <filename>.

A file opened by SET DEVICE TO FILE <filename> will be closed when SET
DEVICE is rerouted.

Examples
To close all open files:

. CLOSE ALL
To close all open database, index, and format files:

. CLOSE DATABASES

See Also
CLEAR ALL, QUIT

COMPILE

COMPILE reads a file containing dBASE IV source code, and creates an object code
file (.dbo) that can be executed by dBASE IV.

Syntax
COMPILE <filename> [RUNTIME)]

82 Language Reference

COMPILE

Defaults

« NOTE All dBASE IV version 1.0 object code files must be recompiled in
dBASE 1V version 2.0 in order to run under version 2.0. Recompilation will in
most instances occur automatically. The commands that run a dBASE object file
will check the version of the code file and recompile it if it is a version 1.0 code
file, and the corresponding source file can be found. dBASE IV will search the
current directory and all directories in the dBASE PATH for source files. The
recompile will fail if the source file has been renamed or cannot be found, or if
the file was created with the DBLINK utility.

Other versions of dBASE IV object code files need not be recompiled to run
under version 2.0. Recompilation is recommended, however, if you want to take
advantage of version 2.0 enhancements.

The filename must also include a path, if the file is not on the default directory or on a
path set with the SET PATH command.

COMPILE can only compile a source file. This command looks for a file with a .prg
extension, unless you provide another extension in the command line. Source files
contain dBASE IV commands and functions, and typically have a .prg (program), .prs
(SQL program), .fmt (format), .frg (generated report form), .1bg (generated label), .qbe
(query), or .upd (update query) extension.

Although the source file may have any extension, COMPILE will always create an
object file with a .dbo extension.

Usage

Object files contain an execute-only form of dBASE code. Earlier versions of dBASE
programs did not generate object code files. COMPILE files, therefore, cannot be
used by dBASE III PLUS or dBASE III. These object files allow dBASE IV to
execute much faster than earlier versions.

You cannot modify an object file. You can modify the source code file, but should
verify that changes to the source code file are COMPILEd to the object code file.

By including the RUNTIME option, you cause dBASE IV to print out any errors or
warnings that occur from commands that aren’t allowed in RunTime use.

When you DO a program file, the source code is compiled into an object code file (if a
.dbo file does not already exist), and then the object code is executed. COMPILE
allows you to generate the object code file without executing the code.

The dBASE 1V internal text editor, which can be accessed from the dot prompt using
MODIFY COMMAND or the Control Center, will delete the old .dbo file when a .prg
file is modified. A subsequent DO command will recompile the .prg file and create a
new .dbo file before executing the procedure.

If SET DEVELOPMENT is ON and you use an external text editor to edit existing
program source (.prg) files, DO compares the time and date stamp of a .prg file with
the time and date stamp of its associated .dbo file. If the .dbo file is older than the .prg
file, DO recompiles the .prg file before executing it.

Chapter 2, Commands 83

COMPILE

If you do not use the MODIFY COMMAND internal text editor, and have SET
DEVELOPMENT OFF, you must recompile your source code files after modifying
them, or else the changes will not be written to the object file.

COMPILE checks each line of the source code file for syntactical accuracy and proper
control structure, and flags syntax errors and control structure violations (such as
missing ENDDOs and ENDIFs). dBASE IV displays messages about these events
during compilation. If SET TALK is OFF warning messages will be suppressed. If a
macro appears in a command line the command line is expanded and parsed at
execution time.

Make sure that each source code file has a unique name. If two source code files share
the same name but have different extensions, compiling one may overwrite the other’s
.dbo file. Also, do not rename a .dbo file. Instead, change the name of the source code
file and recompile it.

dBASE IV supports the concept of procedures within any program file by maintaining
a procedure list at the beginning of every object (dbo) file. If a source file starts with a
command other than PROCEDURE or FUNCTION, the code is compiled as a
procedure and added to the procedure list in the object file with the same name as the
source file. A typical .prg file such as:

* Main.prg
? "MAIN"
RETURN

is compiled into a .dbo file containing one procedure, Main. When you enter DO
MAIN, this name is used to locate the .dbo file, and then used to locate the procedure
within the .dbo file.

A source file can include more than one procedure, such as:

* Main.prg
7 "MAIN"
DO Subb
RETURN

PROCEDURE Subb
7 "SUBB"
RETURN

Note that only code found at the beginning of a file is given the default procedure
name.

Any procedure found in an active .dbo file is available to the DO command. If A.dbo
calls B.dbo calls C.dbo, all the procedures defined within A, B, and C are available to
any procedure in C. dBASE 1V still supports SET PROCEDURE from dBASE III and
dBASE III PLUS, although this command is only required to gain access to
procedures in a file not activated by DO <filename>.

84 Language Reference

COMPILE

Special Case

dBASE IV versions 1.5 and higher support conditional compiler directives in a
procedure. The procedure may be in a .prg, .prs, .fmt, .1bg, .frg, or user-assigned file.
Using these directives, you can indicate sections of the program that should not be
compiled. These sections, and the compiler directives themselves, are not written in
the .dbo file.

The compiler directives are:

#define <name>
#undef <name>
#ifdef <name>
#ifndef <name>
#else

#endif

You can define a name with #define, and then test if the name has been defined with
#ifdef. You can also test if the name has not been defined with #ifndef. The #else and
#endif directives complete the branching structure, like the ELSE and ENDIF
keywords of the IF command. For example, you can include two versions of a menu
procedure in a program, one designed for the UNIX version of dBASE IV, and the
other designed for the DOS version of dBASE IV:

*Condcomp.prg

fidefine UNIXVER

fiifdef UNIXVER
PROCEDURE Menu

felse
PROCEDURE Menu

ffendif

Names are local to the procedure that defines them, and, like memory variables, are
also available to lower-level procedures. If you #define a name in a lower-level
procedure, the name is not available to the calling procedure. Similarly, if you #define
a name in one procedure and #undefine it in a lower-level procedure, the name is
unavailable to the lower-level procedure, but it is still available to the calling program
that defined it.

Names can be up to 32 characters long and are not case sensitive. However, only the
first nine letters are relevant.

Compiler directives can be nested to 32 levels.

Chapter 2, Commands 85

COMPILE
CONTINUE

Optimization

dBASE IV optimizes expressions during compilation. If you use constants in the
source code, the compiler computes and saves the value in the object code file. For
example,

x=1+3+4

is optimized and saved as
x=28

Comparing two string constants in an expression could cause a problem. For example,
"abcde" = "abcd"

evaluates to true (.T.) if SET EXACT is OFF, but to false (.F.) if SET EXACT is ON.
If you SET EXACT ON during execution of the code, the expression will still be false
because it was optimized and saved as a logical false (.F.) during compilation.

See Also

CANCEL, DEBUG, DO, FUNCTION, PROCEDURE, SET LIBRARY, SET
PROCEDURE, SET SYSPROC, SET TRAP, SUSPEND

CONTINUE

CONTINUE searches for the next record in the active database file that meets the
condition specified by the most recent LOCATE command.

Syntax
CONTINUE

Usage

A CONTINUE search ends when it finds a record that meets the specified LOCATE
condition, or when it reaches the end of the LOCATE scope or the end of the file.

LOCATE and CONTINUE are specific to the work area in which you issue them. You
can issue different LOCATE and CONTINUE commands in each work area. If you
leave a work area, the LOCATE condition will still be in effect when you return.

Record Pointer

If SET TALK is ON, and if CONTINUE finds another record meeting the condition,
the record number is displayed. Otherwise, the message End of LOCATE scope
appears, FOUND() returns a logical false (.F.), and the record pointer is positioned at
the last record of the LOCATE scope or at the end of the file. If the record pointer is at
the end of the file, EOF() returns a logical true (.T.).

86 Language Reference

CONTINUE
CONVERT

Example
To locate records containing "OAK" in the Descript field of the Stock database file:

. USE Stock

. LOCATE FOR "0AK" $ Descript
Record = 6

. CONTINUE

Record = 15

. CONTINUE

End of LOCATE scope

The message End of LOCATE scope indicates that no more records match the FOR
or WHILE condition, or the scope of the LOCATE command.

See Also
EOF(), FIND, FOUND(), LOCATE, SEEK, SEEK()

CONVERT

CONVERT adds a field to a database file for storing multi-user lock information.

Syntax
CONVERT [TO <expN>]

Usage

This command adds a character field called _dbaselock to the structure of the currently
selected database file. The length of the field is determined by the numeric expression,
which may be a number from 8 to 24. The default is 16.

The _dbaselock field reserves an area for the following values:

Count = A two-byte hexadecimal number used by the CHANGE() function.

Time = A three-byte hexadecimal number that records the time a lock was placed.
Date = A three-byte hexadecimal number that records the date a lock was placed.

Name = A zero- to 16-character representation of the log-in name of the computer that
placed a lock, if a lock is active.

The count, time, and date portions of the field always take the first eight characters.

If you CONVERT the _dbaselock field to the default of 16 characters, the log-in name
will be eight characters long. If you CONVERT the field to the maximum of 24
characters, the log-in name will be 16 characters long. If you CONVERT the field to
eight characters, no space is reserved for the log-in name, and the name is not written
in the record.

Chapter 2, Commands 87

CONVERT
COPY

Every time a record is updated, the count portion of _dbaselock is rewritten. If you use
the CHANGE() function, the count portion of the field is read from the disk again and
compared to the previous value, which was stored in memory when the record was
initially read. If the values are different, another user has changed the record, and the
CHANGE() function returns a logical true (.T.).

You can reset the value to false by repositioning the record pointer. GOTO RECNO()
rereads the current record’s _dbaselock field, and a subsequent CHANGE() command
should return a false (.F.) unless another user has made another change in the interim.

The LKSYS() function returns the log-in name, date, and time portions of the
_dbaselock field. It indicates who has locked the record or file, and when the lock was
placed. If you place a file lock, the _dbaselock field of the first record in the database
file contains the information used by CHANGE() and LKSYS().

Special Case

In a multi-user environment, the database file must be in exclusive use before you
issue the CONVERT command. Make sure that SET DELETED is OFF before
running CONVERT, or REINDEX the database after running CONVERT.

TIP CONVERT copies the .dbf file to new file with a .cvt extension, then
creates a new .dbf file containing the _dbaselock field. The .cvt file contains the
original file structure before CONVERT.

See Also

CHANGE)(), FLOCK(), LKSYS(), LOCK(), NETWORK(), SET LOCK, SET
REPROCESS, UNLOCK

COPY

COPY duplicates all or part of an active database file, creating a new file. COPY is
also the primary command used to export data to non-dBASE programs.

Syntax

COPY TO <filename>
[[TYPE] <file type>)/[[WITH] PRODUCTION]
[FIELDS <field list>]
[<scope>] [FOR <condition>] [WHILE <condition>]

88 Language Reference

Defaults

This command copies all records, including records marked for deletion, unless SET
DELETED is ON, or unless you specify a scope, FOR, or WHILE clause to limit the
records copied. All fields are copied, unless you specify a FIELDS list or use the SET
FIELDS command.

Memo fields are copied only if the new file is another dBASE IV database file, or the
TYPE option DBMEMO?3 is used. If you specify another TYPE option the contents of
the memo field will not be copied and you may get an error message.

If you do not enter a file type with the command, the file is copied to another
dBASE 1V database (.dbf) file.

Usage

The optional [WITH] PRODUCTION keywords work only with dBASE IV database
files and copy the production .mdx file associated with the database file. You cannot
use the TYPE keyword with the [WITH] PRODUCTION keywords to specify a
different file type.

This option provides a way of copying the production index file which cannot be
copied any other way.

To use the [WITH] PRODUCTION option, you must have a free work area available.

The key expressions and FOR clauses in the copied production .mdx file must be
present in the copied database file. Any indirect file references (aliases) or memory
variables used in the .mdx file should be in memory for the copied index to work.

If the TO file is an ASCII text file or a file supported by another software program,
specify one of the file type options.

You can use an indirect reference for <filename>. An indirect reference is a character
expression that evaluates to a filename, and can be used anywhere you are asked to
provide a filename. You must use an operator in the expression (usually parentheses)
so that dBASE IV knows that the character string is an expression, not the literal
filename. An indirect reference is similar to using the macro substitution character, but
operates much faster.

The _dbaselock field in CONVERTed files is not copied to the new file. If PROTECT
is in use, fields that the user who is copying the file does not have privileges for are
not copied to the new file.

; NOTE The COPY command does not verify that the files you build are

. compatible with another software program. You may specify field lengths, record
lengths, number of fields, or number of records that are incompatible with other
software. Note the file limitations of your other software program before
exporting database files with COPY.

Chapter 2, Commands 89

Options
The options for exported file types are:

s DELIMITED — Delimited Format ASCII file. Data is copied character by
character starting on the left. Each record will end with a carriage return and line
feed. A comma separates each field and, in addition, double quotation marks
surround character data unless you specify another delimiter. This is the same as
DELIMITED WITH ".

s DELIMITED WITH <delimiter> — ASCII text (.txt) file with comma field
separators and character fields enclosed within delimiter characters. All fields are
separated by commas. Character fields are delimited with double quotes by
default, unless you specify another delimiter character using the WITH
<delimiter> option. Records in the text file are variable length, and every record
ends with a carriage return and line feed.

a DELIMITED WITH BLANK — ASCII text (.txt) file with a single space
character separating each field, but with no delimiters enclosing character fields.
Records in the text file are variable length, and every record ends with a carriage
return and line feed.

m SDF — System Data Format ASCII (.txt) file. Character data is not delimited, and
fields are not separated with a character. Records are fixed length, the same length
as the record in the database file, and every record ends with a carriage return and
line feed.

s DBASEII — dBASE II database (.db2) file. The dBASE II file is given a .db2 file
extension, rather than a .dbf extension, to distinguish it from the original
dBASE 1V file. You should rename the file to include a .dbf extension before you
use it in dBASE II. Type F fields are converted to type N fields.

s DBMEMO3 — dBASE III PLUS format for database (.dbf) and memo field (.dbt)
files. Once a database file and its memo file have been created or modified in
dBASE 1V, they cannot be opened in dBASE III PLUS. However, you can COPY
them with TYPE DBMEMO?3 and open the copies in dBASE III PLUS. Any type
F (floating) numeric field that you copy using the DBMEMO3 option is converted
to type N (fixed).

m RPD — RapidFile data (.rpd) file.

m FW2 — Framework II (.fw2) database.

s SYLK — MultiPlan spreadsheet format. Database records are converted to
MultiPlan rows, and database fields are converted to columns. No file extension is
written with the output file.

m DIF — VisiCalc version 1 (.dif) file format. Database records are converted to
VisiCalc rows, and database fields are converted to columns.

s WKS — Lotus 1-2-3 spreadsheet (.wks) format, release 1A. Database records are
converted to Lotus 1-2-3 rows, and database fields are converted to columns.

90 Language Reference

copy
COPY FILE

When COPY is used to write any of the three supported spreadsheet formats (SYLK,
DIF, WKS), the field names are written as column headers in the resulting file. The
file is created in row major order.

Special Case

Use the EXPORT command, rather than the COPY command, to convert files to
PFS:FILE. EXPORT and COPY both convert files to Framework II, dBASE II, and
RapidFile file formats. COPY, however, cannot create a PFS:FILE form.

TIP Do not use the single letters A through J, or the letter M, as a database
filename if you COPY TO a dBASE IV database file. These letters are reserved
as default alias names. You can, however, specify AA (for example) as a
database filename.

If a relation is active and you have specified fields from another work area with the
SET FIELDS command or with the FIELDS clause, the resultant file contains the data
from related records in other work areas.

Example

To copy all the records in the Transact database file whose Client_id is C00002 to a
database file called Temp:

. USE Transact

. COPY TO Temp FOR Client_id = ‘00002’
2 records copied

. USE Temp.dbf

L LIST
Record# CLIENT_ID ORDER_ID DATE_TRANS INVOICED TOTAL BILL
1 C00002 87-107 02/12/87 .T. 1250.00
2 C00002 87-110 03/09/87 .T. 175.00
See Also

APPEND FROM, COPY FILE, COPY STRUCTURE, EXPORT, IMPORT, SET
DELETED, SET FIELDS, SET SAFETY

COPY FILE

COPY FILE copies a file to a new filename.

Syntax
COPY FILE <filename> TO <filename>

Chapter 2, Commands 91

COPY FILE
COPY INDEXES

Usage

You must specify the filenames and file extensions for both files. If you want to copy a
file to another drive or directory, you must also provide the drive designator and
directory path. You do not need to include the directory or drive designator of the first
file if it is already established with the SET PATH or SET DIRECTORY command,
the PATH setting, or in the Config.db file.

You cannot use COPY FILE to copy an open file.

TIP If you copy a database file that has memo fields, you must copy the
associated memo (.dbt) file separately. You may use the COPY command to copy
records from an open database file. Use the COPY TO... WITH PRODUCTION
option if you wish to copy and rename .mdx files.

Example
To make a duplicate of a dBASE program file:

. COPY FILE Accts.prg TO Oldaccts.prg
2123 bytes copied

See Also
COPY, SET DIRECTORY, SET PATH

COPY INDEXES

COPY INDEXES converts a list of index (.ndx) files into file tags in a single .mdx
(multiple index) file.

Syntax
COPY INDEXES <.ndx file list> [TO <.mdx filename>]

Usage

If you do not specify an .mdx file with the TO clause, the tag is written to the
production .mdx file. If a production .mdx file does not exist, it is created with the
same name as the active database file, and the database file header is updated to
indicate the presence of a production .mdx file. If you use a TO clause, the tag is
written to the specified .mdx file. If the .mdx file you supply in the TO clause does not
exist, a new mdx file is created and given the filename specified in the TO clause.

The .ndx files must be open before you issue the COPY INDEXES command. You
may copy a maximum of 10 index (.ndx) files to tags in an .mdx file with one COPY
INDEXES command, because up to 10 index files can be open in a work area.

92 Language Reference

Special Case

OPY INDEXES
COFY MEMO

In a multi-user environment, the database file must be in exclusive use before you
attempt to copy an .ndx file to an .mdx tag.

Example

To convert the Cus_name index file of the Client database file to a tag in the

production .mdx file:

. USE Client INDEX Cus_name
. COPY INDEXES Cus_name

100% indexed 8 records indexed

. DISPLAY STATUS
Currently Selected Database:

Select area: 1, Database in Use:

Index file:
Lastname+Firstname
Production MDX file:
Index TAG:
Index TAG:
Index TAG:
Lastname+Firstname
Memo file:

See Also

C:\DBASE\CLIENT.DBF Alias

: CLIENT

C:\DBASE\ CUS_NAME.NDX Key:

C:\DBASENCLIENT.MDX

: CLIENT
: CLIENT_ID

CLIENT Key
CLIENT_ID Key
CUS_NAME Key:

C:\DBASE\CLIENT.DBT

COPY TAG, INDEX, KEY(), MDX(), NDX(), SET EXCLUSIVE, SET INDEX, SET

ORDER, TAG(), USE

COPY MEMO

COPY MEMO copies the information from a single memo field to an external file.

Syntax

COPY MEMO <memo field name> TO <filename> [ADDITIVE]

Default

If you do not provide an extension for the TO file, a .txt extension is written.

Chapter 2, Commands

COPY MEMO
COPY STRUCTURE

Usage

This command exports the information from a memo field in the current record to a
file on disk.

If you want to copy a file to another drive or directory, you must provide the drive
designator and the path.

Options

ADDITIVE causes the contents of the memo field to be appended to the end of the
named file. If you do not use the ADDITIVE option and the filename already exists on
disk, the contents of the memo field overwrite any existing information in the file.

This command writes to a file without warning, if SET SAFETY is OFF. If SET
SAFETY is ON, and a file of the same name exists in the target directory, you are
prompted with a warning message before the file is written.

Example

To write the information contained in the field Clien_hist to a file named Cus_text,
appending the information in the current record to information that already exists in
the file:

. COPY MEMO Clien_hist TO Cus_text ADDITIVE

See Also
APPEND MEMO, COPY, COPY FILE

COPY STRUCTURE

COPY STRUCTURE copies the structure of the currently active .dbf and .dbt file if
any, but does not copy any records.

Syntax

COPY STRUCTURE TO <filename> [FIELDS <field list>]
[[WITH] PRODUCTION]

Defaults

The filename must include the drive designator and directory, if you want the resultant
file written to a drive or directory other than the default. Unless otherwise specified,
the TO file is assigned a .dbf extension.

94 Language Reference

COPY STRUCTURE
COPY STRUCTURE EXTENDED

Usage
If you use the [WITH] PRODUCTION option, COPY STRUCTURE will create an

empty .mdx file with all of the index tag expressions that were included in the new
.dbf file.

To use the [WITH] PRODUCTION option, you must have a free work area available.

The key expressions and FOR clauses in the copied production .mdx file must be
present in the copied database file. Any indirect file references (aliases) or memory
variables used in the .mdx file should be in memory for the copied index to work.

This command copies the entire database file structure unless limited by the FIELDS
option or SET FIELDS command. The result is another database file with either an
identical structure to the first file, or, if you specify the FIELDS option, with the fields
specified in the fields list.

If SET SAFETY is OFF, a new database file will overwrite an existing file without
warning.
The _dbaselock field in CONVERTed files is not copied to the new file.

If PROTECT is in use, fields that the user who is copying the file does not have
privileges for are not copied to the new file.

TIP You can COPY STRUCTURE under program control to create temporary
database files. You can then add records to the transaction file with the
APPEND command, or add blank records with APPEND BLANK and place
data in the records with REPLACE.

Example
To copy the structure of the Client database file to a file called Temp:

. USE Client
. COPY STRUCTURE TO Temp

See Also

APPEND, APPEND BLANK, APPEND FROM, DISPLAY STRUCTURE,
REPLACE, SET SAFETY

COPY STRUCTURE EXTENDED

COPY STRUCTURE EXTENDED creates a new database file whose records contain
the structure of the current file.

Syntax
COPY TO <filename> STRUCTURE EXTENDED

Chapter 2, Commands 85

COPY STRUCTURE EXTENDED
COPY TAG

Usage

This command creates a database file with five fields: FIELD_NAME, FIELD_TYPE,
FIELD_LEN, FIELD_DEC, and FIELD_IDX. Records in the new file contain the
field name, data type, field width, number of decimal places (in a numeric field), and
index flag for each field in the active database file. Only those index tags that were
selected as “Yes” when the database file structure was created are copied into the
FIELD_IDX field. These are single-field tags that have the same tag name as the index
field name. Composite indexes are not copied.

This command is most often used within application programs in conjunction with the
CREATE FROM command. CREATE FROM creates a database file from the
extended structure file. You can thereby create a database file in a program without
using the interactive CREATE or MODIFY STRUCTURE commands.

The _dbaselock field in CONVERTed files is not copied to the new file. If PROTECT
is in use, fields that the user who is copying the file does not have privileges for are
not copied to the new file.

Because extended structure files created in dBASE IV contain a FIELD_IDX field,
they are not compatible with dBASE III PLUS. The structures of database files created
with earlier versions of the dBASE product did not include index flags.

Example
See the CREATE FROM command.

See Also

APPEND FROM, COPY STRUCTURE, CREATE FROM, LIST/DISPLAY
STRUCTURE

COPY TAG

COPY TAG converts multiple index (.mdx) file tags into index (.ndx) files.

Syntax
COPY TAG <tag name> [OF .mdx filename] TO <.ndx filename>

Default
Using the OF clause, you may specify the .mdx file that contains the tag.

96 Language Reference

COPY TAG
COPY TO ARRAY

Usage

The database file must be in use, because COPY TAG recreates the .ndx file from the
expression contained in the .mdx file tag. The index tag being copied must come from
an open .mdx file. Only one tag can be copied at a time. The FOR clause of an .mdx
file tag will be ignored, as it is not supported by .ndx files.

Example
To copy the Order_id tag from the Stock .mdx file to an .ndx file called Items_id:

. USE Stock
. COPY TAG Order_id TO Items_id.ndx
100% indexed 17 records indexed

. SET INDEX TO Items_id
Master index: ITEMS_ID
. DISPLAY STATUS
Currently Selected Database:
Select area: 1, Database in Use: C:\SET\STOCK.DBF Alias: CLIENT
Master Index file: C:\SET\ITEMS_ID.NDX Key: ORDER_ID

Production MDX file: C:\SET\STOCK.MDX
Index TAG: ORDER_ID Key: ORDER_ID
Index TAG: PART_NAME Key: PART_NAME

See Also

COPY INDEX, DESCENDIN(), FOR(), INDEX, MDX(), NDX(), SET INDEX, SET
ORDER, TAG(), TAGCOUNT(), TAGNO(), UNIQUE

COPY TO ARRAY

COPY TO ARRAY fills an existing array with the contents of one or more records
from the active database file.

Syntax

COPY TO ARRAY <array name> [FIELDS <fields list>]
[<scope>] [FOR <condition>] [WHILE <condition>]

Usage

This command copies selected records and fields from a database file into an existing
array.

Chapter 2, Commands 97

COPY TO ARRAY

For each record in the database file, the first field is stored in the first column, the
second field in the second column, and so on. Each record becomes a row in the array.
This process continues until there are either no more fields or no more array columns.
If the database file has more fields than the array can hold, the excess fields are not
stored. If the database file has fewer fields than the array, the excess array elements
remain unchanged. Memo fields cannot be copied to an array.

If you declare a single-dimensioned array, such as
. DECLARE Transact[5]

COPY TO ARRAY will only be able to copy the first five fields of one record to the
array. To copy more than one record to an array, you must DECLARE a two-
dimensional array (an array with both rows and columns).

Unless you specify a scope, the process begins with the first record in the database file
and continues until there are either no more records in the database file or there are no
more rows in the array.

The data types of the array elements will be the same as the corresponding field types
in the database file.

Options

This command attempts to copy all fields (except memo fields), unless you use the
FIELDS option or the SET FIELDS command.

If you use the FOR clause, the condition is evaluated before each record in the
database file is copied to the array. A record is copied to the array only if the condition
evaluates to a logical true (.T.). If you use the WHILE clause, no further information is
copied once the condition evaluates to a logical false (.F.).

Example

To COPY the records in the Transact database file that have L0001 for the Client_id,
first determine how many elements the array will require, define an array called
Records, and then execute the COPY TO ARRAY command:

. USE Transact && Transact.dbf has five fields.
. DECLARE Records [RECCOUNT(),5] && Define the array.
. COPY TO ARRAY Records FOR Client_id = "L00001"

2 records copied

If RECCOUNT() exceeds 65,535 records, the error message Bad array dimensions
appears. This is because each array dimension is limited to 65,535 elements.

See Also

APPEND FROM ARRAY, COPY FILE, COPY STRUCTURE, DECLARE,
EXPORT, SET DELETED, SET FIELDS, SET SAFETY

98 Language Reference

COUNT

COUNT

COUNT tallies the number of records in the active database file that match specified
conditions.

Syntax

COUNT [TO <memvar>] [<scope>] [FOR <condition>]
[WHILE <condition>]

Usage

If SET TALK is ON, this command counts the number of records and displays the
tally. If you specify a condition with a FOR or WHILE clause, or limit the number of
records with a scope, the tally indicates the number of records that meet the condition
or fall within the scope. COUNT can be limited to records according to a SET FILTER
TO command.

If you include the TO clause, COUNT creates a memory variable (if necessary) and
stores the tally, as a type N (Binary Coded Decimal) number, to this memory variable.

Special Cases

In a multi-user environment COUNT automatically locks the file during its operation
if SET LOCK is ON (the default), and unlocks it after the count is complete. If SET
LOCK is OFF, a COUNT can still be performed, but the result may not be reliable if
another user is changing the database file.

Example
To determine the number of March orders in the Transact database file:

. USE Transact
. COUNT FOR LIKE("03/77/87",DTOC(Date_trans)) TO March_cnt
6 records
. ? "There were "+LTRIM(STR(March_cnt,3,0))+" orders in March."
There were 6 orders in March.

See Also
AVERAGE, CALCULATE, RECCOUNT(), SUM

Chapter 2, Commands 99

CREATE or MODIFY STRUCTURE

CREATE or MODIFY STRUCTURE

CREATE or MODIFY STRUCTURE gives you access to the database file design
screen.

Use CREATE to build a structure for a new database file. Use MODIFY
STRUCTURE to modify the structure of a previously created database file.

The structure of a database file is the definition of field names, field types, field
lengths, number of decimal places (for numeric fields), and a flag indicating the
presence of an .mdx tag for each field.

Syntax
CREATE <filename>

or
MODIFY STRUCTURE

Defaults

Unless you specify a directory with the filename, CREATE writes the new database
file in the default directory. Unless you specify a different extension, the database file
is given a .dbf extension.

You do not specify a filename with MODIFY STRUCTURE. This command can only
modify the structure of the active database file.

If a catalog is active when you create a database file, the file will be added to the
catalog.

Usage

CREATE <filename> and MODIFY STRUCTURE provide the same design screen for
creating or changing the database file structure. The structure contains definitions for
each field in the database file.

You can use an indirect reference for <filename>. An indirect reference is a character
expression that evaluates to a filename, and can be used anywhere you are asked to
provide a filename. You must use an operator in the expression (usually parentheses)
so that dBASE IV knows that the character string is an expression, not the literal
filename. An indirect reference is similar to using the macro substitution character, but
operates much faster.

100 Language Reference

CREATE or MODIFY STRUCTURL

You define the structure of a new database file by providing the following information
for each field:

Field Name

Type

Width

Decimal Places (for a numeric field)

Field Index Flag (if true, a tag is added to the production .mdx file, indexed on
this field)

The field name may be up to 10 characters long, and may consist of letters, numbers,
and the underscore character. The field name cannot contain embedded blank
characters and the first character of the field name must be a letter. When you have
finished entering the field name, press ..

You determine the field type by entering the first letter of the data type (Character,
Numeric [Binary Coded Decimal], Floating point numeric, Logical, Date, or Memo),
or by pressing the Spacebar until the desired data type appears and then selecting it
by pressing ..

You must specify a field width for numeric and character fields. This is the maximum
number of digits or characters you intend to enter in the field. Character fields may be
up to 254 characters long; numeric fields may be up to 20 digits, including the sign
and a decimal point.

Logical, Date, and Memo fields all have predefined widths. A Logical field is one byte
wide. Date fields are always eight bytes. Memo fields are automatically assigned a
length of 10 bytes in the database file, although each memo field entry may contain up
to 64K. Data you enter in memo fields is not stored in the database (.dbf) file, but in an
associated memo (.dbt) text file. The 10 bytes identify the location of memo field
entries in the memo file.

If you specify Y in the Index column of the design screen, dBASE IV will create an
index tag on that field in the production .mdx file.

You can define a record having up to 255 fields. The maximum size of a record is
4,000 bytes, including 10 bytes for each memo field. Each character position in a field
takes up one byte.

Instructions and error messages appear at the bottom of the screen. The pull-down
menus at the top of the screen allow you to work directly with the database file
structure and records. You may print the database file structure, create indexes, sort the
file, remove indexes, and append records to the file.

TIP MODIFY STRUCTURE makes backup copies of the database file (.dbk
extension), memo file (.tbk extension), and multiple index file (.mbx extension)
in the same directory as the original files. After the structure modifications are
completed, the contents from the backup files are appended into the modified
database file. Since MODIFY STRUCTURE is not able to create backup files if
the disk or current directory is full, make sure that you have enough space
available for the backup files before you modify a file’s structure.

Chapter 2, Commands 101

CREATE or MODIFY STRUCTURE

Because MODIFY STRUCTURE appends data into the new file, you may lose
data if you interrupt your computer while the command is saving changes.

Special Cases

In a multi-user environment the database file must be in exclusive use before you can
modify its structure.

You should not change a field’s name and its width or type at the same time. If you do,
dBASE IV will not be able to append data from the old field, and your new field will
be blank. Change the name of a field, save the file, then use MODIFY STRUCTURE
again to change the field’s width or data type.

Do not insert or delete fields from a database file and change field names at the same
time. If you change field names, MODIFY STRUCTURE appends data from the old
file by using the field position in the file. If you insert or delete fields as well as
changing field names, you change field positions and could lose data. You can,
however, change field widths or data types at the same time as you insert or delete
fields. In those cases, since MODIFY STRUCTURE appends data by field name, the
data will be appended correctly.

dBASE IV will successfully convert data for a number of field type conversions. If
you change field types, however, keep a backup copy of your original file, and check
your new files to make sure the data has been converted correctly.

If you convert numeric fields to character fields, dBASE IV will convert numbers
from the numeric fields to right-justified character strings. If you convert a character
field to a numeric field, dBASE IV will convert numeric characters in each record to
digits until it encounters a non-numeric character. If the first character in a character
field is a letter, the converted numeric field will contain zero.

You can convert logical fields to character fields, or vice versa. You cannot convert
logical fields to numeric fields. You can also convert character strings which are
formatted as a date (for example, mm/dd/yy or mm-dd-yy) to a date field, or convert
date fields to character fields.

If you modify the field name, length, or type of any fields that have an associated tag
in the production .mdkx file, the tag is rebuilt.

In general, regarding the conversion of field data types, dBASE IV will attempt to
make a conversion you request, but the conversion must be a sensible one or data may
be lost. Numeric data can easily be handled as characters, but logical data, for
example, cannot become numeric.

To convert incompatible data types (such as logical to numeric), first add a new field
to the file, use REPLACE to convert the data, then delete the old field.

To use a database file as a SQL table in SQL mode, you must define the file as a table
using the SQL DBDEFINE command. The DBDEFINE command updates the system
catalogs used by SQL to access the file.

102 Language Reference

CREATE or MODIFY STRUCTURI
CREATE FROM

However, you can use most dBASE commands to access database files in SQL mode
(although you cannot use MODIFY STRUCTURE to change a database file that has
been defined as a SQL table).

See Also

APPEND FROM, APPEND MEMO, COPY STRUCTURE, COPY STRUCTURE
EXTENDED, CREATE FROM, SET BLOCKSIZE, SET EXCLUSIVE, SET
SAFETY, SET SQL

CREATE FROM

CREATE FROM forms a new database file from the structure created with the COPY
STRUCTURE EXTENDED command.

Syntax
CREATE <filename> FROM <structure extended file>

Usage
This command is most often used in application programs in conjunction with the
COPY STRUCTURE EXTENDED command. CREATE FROM creates a database

file from the extended structure file, without using the interactive CREATE or
MODIFY STRUCTURE commands.

The file created with CREATE FROM becomes the active database file in the
currently selected work area. If the CREATE FROM operation fails for any reason, no
database file will be open in the current work area.

TIP If any fields in the file created with COPY STRUCTURE EXTENDED
have FIELD_IDX =Y, a production .mdx file will be created with the
appropriate tags in the new file.

Chapter 2, Commands 103

CREATE FROM
CREATE/MODIFY APPLICATION

Example

In this example, you use the COPY STRUCTURE EXTENDED command to create
the Newnames database file from Client.dbf. Then you create a new database file with
the same structure as Client.dbf, using CREATE FROM.

. USE Client

. COPY STRUCTURE EXTENDED TO Newnames

. CREATE Nclient FROM Newnames

. DISPLAY STRUCTURE

Structure for database: C:\DBASE\NCLIENT.DBF
Number of data records: 0

Date of last update : 11/05/87
Field Field Name Type Width Dec Index
1 CLIENT_ID Character 6 Y
2 CLIENT Character 30 Y
3 LASTNAME Character 15 N
4 FIRSTNAME Character 15 N
5 ADDRESS Character 30 N
6 CITY Character 20 N
7 STATE Character 2 N
8 ZIP Character 10 N
9 PHONE Character 13 N
10 CLIEN_HIST Memo 10 N
** Total ** 152
See Also
COPY, COPY STRUCTURE, COPY STRUCTURE EXTENDED, LIST/DISPLAY
STRUCTURE

CREATE/MODIFY APPLICATION

CREATE/MODIFY APPLICATION gives you access to the dBASE IV Applications
Generator, which generates the code needed to tie objects, such as database files, index
files, queries, reports, forms, menus, and lists, together in one application.

Syntax
CREATE/MODIFY APPLICATION <filename>/?

Defaults

You must provide a filename for the application, or use the ? (query clause), in the
command line. If you provide an application filename and are creating a new
application, dBASE IV uses this name in the Application Definition dialog box. You
can, however, change the application name in the dialog box.

104 Language Reference

CREATE/MODIFY APPLICATION

Usage

The CREATE APPLICATION and MODIFY APPLICATION commands are identical.
The presence of an application object (.app) file, rather than the command verb you
use, determines whether a create or modify operation will occur. If the .app object file
exists, this command allows you to modify it; if the .app object file does not exist, this
command allows you to create a new one.

Besides the application object, you may create the objects listed in Table 2-6 with the
Applications Generator.

Table 2-6 Objects created with the Applications Generator

Object Extension Description

Horizontal bar menu .bar Menu items that appear across the screen

Pop-up menu .pop Menu items that appear vertically in a
frame

Files lists fil A list of files from which you may choose

Structure list .str A list of fields in the current database file
or view from which you may choose

Values list .val A list of values that a field may contain

Batch process .bch A series of actions associated with a menu
item or list that your application may
perform

If a catalog is open, only the application (.app) object that you create is added to the
catalog. Any other objects that you create (.bar, .pop, .fil, .str, .val, or .bch) are added
to the current directory.

Options

If a catalog is open, the ? symbol queries the catalog for all available .app object files.
If a catalog is not open, the ? symbol presents all .app object files on the disk. You can
then choose the application you wish to modify.

Special Cases

You may also enter the Applications Generator from the Control Center. If you enter
the Applications Generator from CREATE/MODIFY APPLICATION, however, the

exit options return control to the dot prompt or the next command in a program file,

not to the Control Center.

Chapter 2, Commands 105

CREATE/MODIFY APPLICATION
CREATE/MODIFY LABEL

If you select the <create> marker from the Applications panel in the Control Center,
you can choose to create a new application with either the program editor or the
Applications Generator. CREATE/MODIFY APPLICATION, however, brings you
directly to the Applications Generator. To reach the program editor, you must type
MODIFY COMMAND.

See Also

Using dBASE 1V contains further information about what applications are and how to
create them.

CREATE/MODIFY LABEL

CREATE/MODIFY LABEL gives you access to the label designer. The label designer
allows you to create label form (.1bl) files using the fields specified in the current
database file or in other related database files.

Syntax
CREATE/MODIFY LABEL <filename>/?

Defaults

Unless you specify otherwise, dBASE IV creates the file with an .1bl extension and
generates a file with an .1bg file extension. If a catalog is open and SET CATALOG is
ON, dBASE IV adds the label file to the catalog.

Usage

Use the CREATE LABEL command to create a new label form (.1bl) file. The .1bl file
contains all the information needed to set up a display of the label design which can
later be changed, and to print labels using data from a database file or view.

You specify the size of the label you want to create and the number of printed lines on
each label. These values should match the label forms or paper on which you want to
print.

The CREATE LABEL and MODIFY LABEL commands are identical. The presence
of a label form file, rather than the command verb you use, determines whether a
create or modify operation will occur. If the .1bl file exists, this command modifies it;
if the .1bl file does not exist, this command creates one.

Using CREATE/MODIFY LABEL, you select and lay out the information you want
on each label. When you save the label form, CREATE/MODIFY LABEL creates a
file containing the dBASE IV code that prints labels. This file has the same name as
the label form file, but with an .1bg file extension. When you first print labels with the
LABEL FORM command, an .1bo file, which contains the compiled object code of the
Ibg file, is written to disk. The LABEL FORM command subsequently uses this .1bo
file whenever you print labels with this form.

106 Language Reference

CREATE/MODIFY LABEL
CREATE/MODIFY QUERY VIEW

Options

If a catalog is open, the ? symbol queries the catalog for all available .1bl files
associated with the active database file or view. If a catalog is not open, the ? symbol
presents all .1bl files on the disk. You can then choose the label form file you wish to
modify.

Special Cases

You may also enter the label designer from the Control Center. If you enter the label
designer from CREATE/MODIFY LABEL, however, the exit options return control to
the dot prompt or the next command in a program file, not to the Control Center. If
SET DESIGN is ON, you can display the query design screen from BROWSE or
EDIT or from the design surface directly by pressing Shift-F2 Design.

If you erase the label form (.1bl) file, you will not be able to use the CREATE or
MODIFY LABEL commands to edit the file. An attempt to edit the file will generate a
new label file if the old label file cannot be found.

Although you can use MODIFY COMMAND or a text editor to make changes
directly to the generated label (.Ibg) file, the changes will not be made to the .1bl or
.Ibo files. You use LABEL FORM to compile a new .Ibo file. LABEL FORM
compares the timestamps of .Ibo and .lbg files to determine whether a new .Ibo file
should be compiled.

If you modify a label form (.Ibl) file that was created in dBASE III PLUS, the file is
converted to dBASE IV format, and the original dBASE III PLUS .1bl file is saved
with an .1b3 extension. You cannot run dBASE IV labels in dBASE III PLUS. Label
forms created with dBASE III PLUS will run in dBASE IV without modification.

See Also
DO, LABEL FORM, SET CATALOG, SET SAFETY, SET VIEW, _pageno

Using dBASE IV contains further information on creating labels with the dBASE IV
label designer.

CREATE/MODIFY QUERY VIEW

CREATE/MODIFY QUERY or CREATE/MODIFY VIEW gives you access to the
query design screen, which allows you to create query (.gbe) files that extract records
matching specified conditions, or update query (.upd) files that can modify records in
the database file. Using a query file, you can activate indexes, perform sorts, and
calculate sums.

Chapter 2, Commands 107

CREATE/MODIFY QUERY VIEW

Syntax
CREATE/MODIFY QUERY <filename>/?

or
CREATE/MODIFY VIEW <filename>/?

Defaults

Unless you specify otherwise, dBASE IV writes the query file with a .qbe or .upd
extension. If a catalog is open and SET CATALOG is ON, the query file is added to
the catalog.

Usage

A .gbe file allows only the records that meet the specified conditions to be displayed
when subsequent commands are issued. A .upd file contains instructions for updating
records in the database file.

The new query file will have a .upd extension only if you placed an update operator
under the name of the file in the design screen’s file skeleton.

You may use either the CREATE/MODIFY QUERY or CREATE/MODIFY VIEW
command to access the query design screen.

The CREATE and MODIFY forms of the command are identical. The presence of a
query (either .qbe or .upd) file, rather than the command verb you use, determines
whether a create or modify operation will occur. If the .qbe or .upd file exists, this
command asks if you want to modify it; if the .qbe or .upd file does not exist, this
command creates one.

dBASE IV views are a superset of the queries and views created by earlier versions of
dBASE programs. The .vue files created by earlier versions can be read by this
dBASE IV command, and new .qbe files will be created from them. The new .gbe files
cannot, however, be read by earlier versions of the dBASE product.

If you do not specify an extension, the command first looks for a .qbe or .upd file
previously created by the queries design screen. If a .qbe or .upd file cannot be found,
this command looks for a .vue file created with an earlier version of the dBASE
product. If a .vue file also cannot be found, this command creates a new file with
either a .qbe or .upd extension.

When you first use SET VIEW to activate a .qbe file, a .qbo file is written to disk. The
SET VIEW command subsequently uses the .qbo file whenever you activate this
query.

When you use DO to perform the update query, a .dbo file is written to disk. You may
rename this .dbo extension to .upo if you want to keep your update query files separate
from your program files. (You must rename the extension to .upo, however, in order to
add this file to the Queries panel of the Control Center.)

108 Language Reference

CREATE/MODIFY QUERY VIEW
CREATE/MODIFY REPORT

Options

If a catalog is open, the ? symbol queries the catalog for all available .qbe and .upd
files that are associated with the active database file. If a catalog is not open, the ?
symbol presents all .qbe and .upd files on the disk. You can then choose the query file
you wish to modify.

Special Cases

You may also enter the query designer from the Control Center. If you enter the query
designer from CREATE/MODIFY QUERY, however, the exit options return control to
the dot prompt or the next command in a program file, not to the Control Center.

If you erase the .gbe or .upd files, you will not be able to use the CREATE/MODIFY
QUERY/VIEW command to edit these files. An attempt to edit these files will
generate new query files if the old query files cannot be found.

Although you can use MODIFY COMMAND or a text editor to make changes directly to
the .gbe or .upd files, the changes will not be made to the .gbo or .upo files. You must
delete the old object files, and use SET VIEW or DO to compile new object files.

See Also
SET CATALOG, SET FILTER, SET SAFETY, SET VIEW

Using dBASE IV contains further information on creating queries with the query
designer.

CREATE/MODIFY REPORT

CREATE/MODIFY REPORT gives you access to the report designer, which allows
you to create report form (.frm) files using the fields specified in the current database
file or in other related database files.

Syntax
CREATE/MODIFY REPORT <filename>/?

Defaults

Unless you specify otherwise, dBASE IV creates the file with an .frm extension.
CREATE REPORT generates a file that is automatically given an .frg extension. If a
catalog is open and SET CATALOG is ON, the report form file is added to the catalog.

Usage

Use the CREATE/MODIFY REPORT command to create a new report form (.frm)
file. The report form file contains all the information needed to set up a display of the
report design which can later be changed, and to print reports using data from a
database file or view.

Chapter 2, Commands 109

CREATE/MODIFY REPORT

The CREATE REPORT and MODIFY REPORT commands are identical. The
presence of a report form (.frm) file, rather than the command verb you use,
determines whether a create or modify operation will occur. If the .frm file exists, this
command modifies it; if the .frm file does not exist, this command creates one.

Using CREATE or MODIFY REPORT, you may select the information you want the
report to contain, place fields where you would like them to print, group information
together, and calculate statistical information on numeric expressions. When you save
the report form, CREATE/MODIFY REPORT creates a file containing the dBASE IV
code that prints a report. This file has the same name as the report form file, but with
an .frg file extension. When you print the report, as with the REPORT FORM
command, an .fro file, which contains the compiled object code of the frg file, is
written to disk. The REPORT FORM command subsequently uses this .fro file
whenever you print a report with this form.

Options

If a catalog is open, the ? symbol queries the catalog for all available .frm files
associated with the active database file or view. If a catalog is not open, the ? symbol
presents all .frm files on the disk. You can then choose the report form file you wish to
modify.

Special Cases

You may also enter the report designer from the Control Center. If you enter the report
designer using the CREATE/MODIFY REPORT command, however, the exit options
return control to the dot prompt or the next command in a program file, not to the
Control Center.

If you erase the report form (.frm) file, you will not be able to use the CREATE or
MODIFY REPORT commands to edit the file. An attempt to edit the file will generate
a new report file if the old report file cannot be found.

Although you can use MODIFY COMMAND or a text editor to make changes
directly to the generated report form (.frg) file, the changes will not be made to the
frm or .fro files. You use REPORT FORM to compile a new .fro file.

If you modify a report form (.frm) file that was created in dBASE III PLUS, the file is
converted to dBASE 1V format, and the original dBASE III PLUS .frm file is saved
with an .fr3 extension. You cannot run dBASE IV reports in dBASE III PLUS.

See Also

REPORT FORM, SET CATALOG, SET DESIGN, SET SAFETY, SET VIEW,
_pageno

Using dBASE IV contains further information on creating reports with the report
designer.

110 Language Reference

CREATE/MODIFY SCREEN

CREATE/MODIFY SCREEN

CREATE/MODIFY SCREEN gives you access to the forms design screen, which
allows you to create custom screen forms. These screen forms determine the way
fields and other data appear on the screen when you use a full-screen editing
command, such as EDIT or APPEND if you set FORMAT TO the resulting .fmt file.

Syntax
CREATE/MODIFY SCREEN <filename>/?

Defaults

dBASE IV writes the screen file with an .scr extension and generates a format file
with an .fmt extension unless you specify otherwise. If a catalog is open and SET
CATALOG is ON, the query and format files are added to the catalog.

When you create a new format file, it is automatically opened. The next time you enter
a command that requires a screen format (APPEND, CHANGE, EDIT, INSERT, or
READ), the new format is used.

Usage

Use the CREATE SCREEN command to create a screen (.scr) file and new format
(.fmt) file. The screen file contains the information in a form that you can later edit,
and the format file contains the dBASE IV commands to display the data on the
screen. When you design or modify a screen, you are working with the screen file.

The CREATE SCREEN and MODIFY SCREEN commands are identical. The
presence of a screen (.scr) file, rather than the command verb you use, determines
whether a create or modify operation will occur. If the .scr file exists, this command
modifies it; if the .scr file does not exist, this command creates one and generates a
new format file.

Using CREATE or MODIFY SCREEN, you can position fields on the screen; display
calculated fields and memory variables; include additional text, boxes, and lines;
define colors of fields, text, boxes, and lines; and select, move, and copy fields, boxes,
and blocks of text.

When you save the screen form, CREATE/MODIFY SCREEN creates a format file
containing @ commands to display and allow editing of the data. The format file has
the same name as the screen file, but with an .fmt file extension. When you first use
the format file with the SET FORMAT command, an .fmo file, which contains the
compiled object code of the .fmt file, is written to disk. dBASE IV subsequently uses
this .fmo file whenever you use SET FORMAT with a full-screen editing command.

Chapter 2, Commands M

CREATE/MODIFY SCREEN

To use a format file, you must USE its associated .dbf file. Then, open the format file
with SET FORMAT TO <format filename> (unless you have just created it). If you do
not open a format file, the APPEND, CHANGE, EDIT, INSERT, and READ
commands use the default entry screen, which looks like the Quick Layout screen.

You can open or close the format file you created at any time. Use SET FORMAT TO
<format filename> to open a format file and SET FORMAT TO (with no parameter) to
close it. You can also use CLOSE FORMAT to close a format file.

Options

If a catalog is open, the ? symbol queries the catalog for all available .scr files
associated with the active database file or view. If a catalog is not open, the ? symbol
presents all .scr files on the disk. You can then choose the screen file you wish to
modify.

Special Cases

Unlike earlier versions of the dBASE product, CREATE/MODIFY SCREEN does not
make any changes to the physical structure of the database file.

If you erase the screen file, you will not be able to use the CREATE or MODIFY
SCREEN commands to edit the file. An attempt to edit the file will generate a new
screen file if the old screen file cannot be found.

Although you can use MODIFY COMMAND or a text editor to make changes
directly to the format (.fmt) file, the changes will not be made to the .scr or .fmo files.
You use SET FORMAT to compile a new .fmo file.

If you modify a screen (.scr) file that was created in dBASE III PLUS, the file is
converted to dBASE IV format, and the original dBASE III PLUS .scr file is saved
with an .sc3 extension. You cannot modify dBASE IV screen files in dBASE III
PLUS.

The format file that CREATE/MODIFY SCREEN generates has literal strings
embedded in double quotation marks. Because of the double quote marks inside a
format file, you should avoid using them in the surface design of a screen form.

See Also

@, APPEND, BROWSE, EDIT, INSERT, READ, SET CATALOG, SET FORMAT,
SET SAFETY, SET VIEW

Using dBASE IV contains further information on using the screen designer.

112 Language Reference

CREATE VIEW
FROM ENVIRONMENT

CREATE VIEW FROM ENVIRONMENT

CREATE VIEW FROM ENVIRONMENT builds a view (.vue) file that is compatible
with dBASE III PLUS, if your dBASE IV environment does not exceed dBASE III
PLUS limits.

Syntax
CREATE VIEW <.vue filename>/? FROM ENVIRONMENT

Defaults

You must provide a filename for the view file, or use the ? (query clause) in the
command line. Unless otherwise specified, this command supplies a .vue extension to
the file it creates. If a catalog is open, and SET CATALOG is ON, dBASE IV adds the
view file to the catalog.

Options

If a catalog is open, the ? symbol queries the catalog for all .vue files. If a catalog is
not open, the ? symbol presents all .vue files on the disk. You can then choose a file to
overwrite.

Usage

The dBASE III PLUS CREATE VIEW FROM ENVIRONMENT command allowed
you to create .vue files that saved information about the current selection of work
areas: open database, format, and index files; relations; field lists; and filter conditions.
The dBASE III PLUS SET VIEW command activated the environment saved in the
.vue file by opening the files and re-establishing the field lists, relations, and filter
conditions.

Although the dBASE IV query designer, which is accessible from the CREATE/
MODIFY QUERY/VIEW command, provides much more capability than .vue files
allowed, dBASE IV also allows you to create .vue files from the current environment
for compatibility with dBASE III PLUS applications.

CREATE VIEW FROM ENVIRONMENT builds a view (.vue) file that saves the
following information from the currently active environment or work areas:

All open database files, index files, and the work area of each file

All relations between the database files

The currently selected work area number

The active field list

The open format (.fmt) file, if any

Filter conditions in effect
SET KEY setting

Chapter 2, Commands 113

CREATE VIEW

FROM ENVIRONMENT
DEACTIVATE MENU

You must open the files and establish the field lists, filter conditions, and relations
before using CREATE VIEW FROM ENVIRONMENT.

SET VIEW TO a .vue file will activate the view that CREATE VIEW FROM
ENVIRONMENT saved.

To deactivate the view file, open a different view file or type CLOSE DATABASES.
This closes the open database files and their associated files that form the view file.

See Also

CREATE/MODIFY QUERY/VIEW, SELECT, SET FIELDS, SET FORMAT, SET
INDEX, SET RELATION, SET VIEW, USE

DEACTIVATE MENU

The DEACTIVATE MENU command deactivates the active bar menu and erases it
from the screen, while leaving it in memory. It has no effect when executed from the
dot prompt. It is used in ON SELECTION statements or in procedures called by ON
SELECTION statements.

Syntax
DEACTIVATE MENU

Usage

This command does not require a menu name; it deactivates the only active menu and
erases it from the screen. The screen returns to displaying whatever is under the
deactivated menu.

A deactivated menu is not released from memory; you can reactivate it at any time
with the ACTIVATE MENU command.

DEACTIVATE MENU returns control to the program line immediately following the
one that activated the menu. If the command is executed from a called procedure, any
command in the procedure following DEACTIVATE is not executed (it does an
immediate RETURN). If an ON PAD is in effect, DEACTIVATE MENU will also
deactivate all descendent popups and menus.

114 Language Reference

DEACTIVATE MENU
DEACTIVATE POPUP

Example

This example defines a bar menu with two selections. It can display a directory listing
or, alternately, deactivate itself:

. DEFINE MENU Test MESSAGE "Test"

. DEFINE PAD Dir OF Test PROMPT "Directory"™ Al 0,0

. DEFINE PAD Deac OF Test PROMPT "Deactivate" AT 0,15
. ON SELECTION PAD Dir OF Test DIR

. ON SELECTION PAD Deac OF Test DEACTIVATE MENU

. ACTIVATE MENU Test

See Also

ACTIVATE MENU, CLEAR MENUS, DEFINE MENU, ON SELECTION,
RELEASE MENUS

DEACTIVATE POPUP

The DEACTIVATE POPUP command erases the active pop-up menu from the screen
while leaving it intact in memory. Any text that was covered by the popup is displayed
again.

Syntax
DEACTIVATE POPUP

Usage

DEACTIVATE POPUP has no effect when executed from the dot prompt, because
when a popup is active, you can be only in the active popup. If you press the Esc key,
you bypass this command, deactivate the popup, and return to the dot prompt or
program.

DEACTIVATE POPUP returns control to the program line immediately following the
one that activated the popup. If the ON SELECTION command is used to call a
procedure that DEACTIVATE: the popup, any command in the procedure following
the DEACTIVATE command is not executed. DEACTIVATE POPUP returns control
to the line immediately following the ACTIVATE POPUP command in the calling
procedure.

Example

This example shows a popup called Exit_pop, with two options. Either option calls a
procedure that evaluates the user’s selection. Notice that the popup is deactivated as
one of the options of the procedure file.

Chapter 2, Commands 115

DEACTIVATE POPUP
DEACTIVATE WINDOW

. DEFINE POPUP Exit_pop FROM 3,38

. DEFINE BAR I OF Exit_pop PROMPT "QUIT"

. DEFINE BAR 2 OF Exit_pop PROMPT "Exit to dot prompt"
. ON SELECTION POPUP Exit_pop DO Exit

. ACTIVATE POPUP Exit_pop

PROCEDURE Exit
DO CASE
CASE BAR() =1
QUIT
CASE BAR() = 2
DEACTIVATE POPUP
ENDCASE

See Also

ACTIVATE POPUP, CLEAR POPUPS, DEFINE POPUP, ON SELECTION POPUP,
RELEASE POPUPS, RESTORE SCREEN, SAVE SCREEN

DEACTIVATE WINDOW

The DEACTIVATE WINDOW command deactivates specified windows and removes
them from the screen, without releasing them from memory.

Syntax
DEACTIVATE WINDOW <window name list>/ALL

Usage

This command deactivates windows in the window name list by erasing them from the
screen. The windows are not released from memory, and you can bring them back to
the screen with the ACTIVATE WINDOW command.

When you DEACTIVATE a window, any window that was previously ACTIVATEd
becomes current again. DEACTIVATEing all windows with the ALL option restores
full-screen mode.

See Also

ACTIVATE SCREEN, ACTIVATE WINDOW, DEFINE WINDOW, MOVE
WINDOW, RESTORE WINDOW, SAVE WINDOW

116 Language Reference

DEBUG

DEBUG gives you access to the dBASE 1V program debugger.

Syntax
DEBUG <filename>/<procedure name> [WITH <parameter list>]

Usage

This command, like DO, compiles and executes a program or procedure, but also calls
the dBASE 1V full-screen debugger.

The debugger screen contains four windows that provide information about the state
of the .prg file and open files. The windows allow you to run a program or procedure
and see the commands as they are executing, edit the program or procedure, set
breakpoints to halt program execution, and display the results of expressions while the
program is executing.

The screen is divided into a debug window, an edit window, a breakpoint window, and
a display window.

The debug window, at the bottom of the screen, shows the current work area, database
file, program file, procedure, record number, line number, master index file, and the
ACTION: prompt. Pressing Esc or Ctrl-End anywhere on the screen returns you to
the ACTION: prompt in the debug window.

If you enter an E at the ACTION: prompt, the edit window becomes active. This
window, at the top of the screen, shows the program or procedure being executed.
When the edit window is active, you can access the dBASE IV editor and make
changes to the program. You must save the file to avoid losing the changes. Once the
changes are made, the debugger continues execution from the old file. The debugger
may execute a command line that is not the line you expect to be executed, depending
on how you changed the file.

If you enter a B at the ACTION: prompt, the breakpoint window, on the right side of
the screen, becomes active. You can enter one or more conditions in the breakpoint
window that will be evaluated after each line of code is executed. If one of the
conditions evaluates to true (.T.), the program is halted and the debug screen
reappears. Press Esc or Ctrl-End to return to the ACTION: prompt from the
breakpoint window.

If you enter a D at the ACTION: prompt, the display window, on the left side of the
screen, becomes active. You can enter dBASE expressions on the left of this window,
but not expressions using the macro substitution character (&). The results are
displayed on the right of the display window.

Chapter 2, Commands 117

118

At the ACTION: prompt, you may also enter the following:

m L Line — Specify which line to execute next.

m N Next — Execute the next command in the current procedure, then return to the
ACTION: prompt. If there is a DO in the current procedure, the called procedure
will execute outside the debugger environment, although the breakpoint watch will
remain in effect. If you precede the N with a number, you direct the debugger to
execute that number of commands in the current procedure before returning to the
ACTION: prompt.

m P Program Trace — Show the program trace information, which includes the
current program, procedure, and line number.

s Q Quit — Quit the debugger and cancel the program.
s R Run — Run the program until a breakpoint or error is encountered.

m S Step — Execute the next command, then return to the ACTION: prompt. If you
precede the S with a number, you direct the debugger to step through that number
of commands before returning to the ACTION: prompt. Unlike N, procedures
called from the current procedure are executed within the debugger environment.

m U Suspend — Temporarily exit the debugger to the dot prompt. From the dot
prompt, type RESUME to return to the debugger. Type CANCEL to end the
debugger session and remain at the dot prompt.

You can only operate one DEBUG session at a time; it isn’t possible to start a
second while the first is suspended. If you exit from a DEBUG session, use the
RESUME command to continue the suspended session. If you enter a second
DEBUG command while the current session is suspended, you will execute a
RESUME and return to the current DEBUG session.

m . — Execute either 1S or 1N. If a Step, S, was last executed, .| will execute a 1S.
If a Next, N, was last executed, ! will execute a 1N. By default, . executes a 1S.

F1 Help and F9 Zoom are toggle keys:

Pressing F1 Help anywhere on the screen brings up or removes the Help panel, a brief
description of the debug commands you can enter at the ACTION: prompt.

Pressing F9 Zoom removes the debugger windows from the screen to show the
underlying screen information, or replaces the debugger windows on the screen.

Options

The WITH parameter allows you to pass parameters in the same way as DO. The
parameter list may contain any valid dBASE IV expressions. Note that DEBUG with
<parameter list> can accept a maximum of ten constants. The number of variables

is 50.

See Also

COMPILE, DO, LINENO(), MODIFY COMMAND, PROGRAMY(), SET DEBUG,
SET ECHO, SET PROCEDURE, SET STEP, SET TALK, SET TRAP

Language Reference

DECLARE

DECLARE

DECLARE creates one- or two-dimensional arrays of memory variables.

Syntax

DECLARE <array name 1> [{<number of rows>,} <number of columns>]
{,<array name 2> [{<number of rows>,} <number of columns>] ...}

In this paradigm, the curly braces indicate optional items. The square brackets are a
required part of the DECLARE command syntax.

Defaults

The array is public if the DECLARE command is entered at the dot prompt, private if
the command is in a program file. You may create a public array in a program file with
the PUBLIC command.

PUBLIC ARRAY Parts[6,2]

creates a public array, called Parts, if the command is used in a program file.

DECLARE Parts[6,2]

creates a private array, called Parts, if you use the command in a program file. If you
use the command from the dot prompt, the array is public.

The array definition list consists of the array names and array dimensions. Like
memory variables, array names can be up to ten characters long. They can contain
letters, numbers, and underscores. They must begin with a letter and cannot contain
embedded blank spaces. An array can have the same name as a dBASE IV command;
however, this may cause unpredictable results.

The array dimensions consist of one or two numbers in square brackets. The first
number is the number of rows in the array; the second is the number of columns in the
array. Rows in an array correspond to records in a database, and columns in an array
correspond to fields in a database. If only one number is used, the array is one-
dimensional. If two are used, they are separated by a comma and the array is two-
dimensional. The maximum number of dimensions is two. The maximum size of an
array (rows x columns) is limited only by your system’s memory. A single dimension,
however, is limited to 65,535 elements.

. DECLARE Cost[15]

creates a one-dimensional array (a row).

Chapter 2, Commands 119

DECLARE

Specifying just the number of columns in a row is the same as declaring a one-row
array, as in:

. DECLARE Cost[1,15]

Cost is the array name, and it contains fifteen elements. The elements are numbered
starting at 1.

. DECLARE Items[8,3]

creates a two-dimensional array called Items, which has eight rows and three columns.
It contains 24 elements, numbered by row and column position.

The DECLARE command creates a set of memory variables, each of which initially
contains a logical false (.F.) value. Array elements assume a data type only when
information is stored to them. For example:

. STORE {6/15/88) TO Mdate[2,2]
initializes the element Mdate[2,2] with a date value, as does the following:
. mdate[2,2]=(6/15/88}

One array may contain elements of different data types.

. NOTE Any array, no matter how complex, is still handled as a memory
variable. This means you can replace an array with a variable of the same name
without seeing a warning message or needing to approve the replacement. Use
caution when you create or replace memory variables with names similar to
those of arrays present in memory.

The array name uses one slot from the same memvar pool used by other memory
variables. Each array element, however, does not use a slot from this memvar pool, but is
stored in a separate block allocated to hold the elements. If an array declaration exceeds
available memory, the error message Insufficient Memory appears. After declaring an
array, the elements are treated like any other memory variable. The elements are referred
to by their array name and position in the array, beginning from left to right and top to
bottom. For example, Cost[4] or Items[5,2] are sample element names.

120 Language Reference

DECLARE

All commands and functions which can be used with memory variables can also be
used with array elements, as long as the array has been declared and the element is
within the range of the array declaration. You can pass individual elements of an array
to procedures and functions, but you cannot pass the entire array by reference. Some
commands, such as COPY, APPEND, and REPLACE, have special forms (COPY TO
ARRAY, APPEND FROM ARRAY, and REPLACE FROM ARRAY) to handle arrays.
Commands that manipulate memory variables (such as CLEAR ALL, CLEAR
MEMORY, LIST/DISPLAY MEMORY, RELEASE, RESTORE, and SAVE) support
arrays as well as memory variables.

If you reference array coordinates that do not exist, the error message Bad array
dimension(s) appears. If you reference an array name that has not been DECLAREd,
the message Not an array appears.

Examples

Using the Transact database file, store the number of orders and the sum of the
Total_bill field to an array called Details:

. SET TALK OFF

. USE Transact

. DECLARE Details[2]

. CALCULATE CNT(), SUM(Total_bill) TO ARRAY Details

. 2 LTRIM(STR(Details[1],8,0)), "orders for $" + LTRIM(STR(Details(2]1,9,2))
12 orders for $10080.00

Using the same database file in a program file, use two arrays to detail the breakdown
of orders by Client_id:

USE Transact ORDER Client_id

DECLARE Orders[12,3] && Declare one row for each client.
DECLARE Details[2]
Mcnt = 1
DO WHILE .NOT. EQF()
Orders[Mcnt,1] = Client_id 8& Save Client_id.

CALCULATE CNT(), SUM(Total_bill) TO ARRAY Details;
WHILE Client_id = Orders[Mcnt,1]
Orders[Mcnt,2] = Details[1] && Save count of orders.
Orders[Mcnt,3] = Details[2] && Save total for Client_id.
Mcnt = Mcnt + 1
ENDDO
? "Client ID", "Orders" AT 12, "Total" AT 24 && Column headings.
Mclients = Mcnt - 1
Mcnt = 1
DO WHILE Mcnt <= Mclients
? Orders[Mcnt,1], STR(Orders[Mcnt,2],8,0) AT 10,;
STR(Orders[Mcnt,31,9,2) AT 20
Mcnt = Mcnt + 1
ENDDO

oy

Chapter 2, Commands 121

DECLARE
DEFINE BAR

See Also

APPEND FROM ARRAY, AVERAGE, CALCULATE, CLEAR ALL, CLEAR
MEMORY, COPY TO ARRAY, COUNT, LIST/DISPLAY MEMORY, PUBLIC,
RELEASE, REPLACE FROM ARRAY, RESTORE, SAVE, SUM

Getting Started with dBASE IV provides information on memory allocations.

DEFINE BAR

The DEFINE BAR command defines a single option in a pop-up menu.

Syntax

DEFINE BAR <line number> OF <popup name> PROMPT <expC>
[MESSAGE <expC>] [SKIP [FOR <condition>]]

Usage

A bar is a single prompt or option that appears in a defined popup. To use DEFINE
BAR, you must not use the PROMPT FIELD, PROMPT FILES, or PROMPT
STRUCTURE options of the DEFINE POPUP command. This is because the
PROMPT options take the place of BARSs and fill a defined pop-up window.

Use only positive whole numbers for the line numbers; fractional line numbers are
truncated. You can define up to 16,378 bars.

If you define a second bar prompt for a line number that already has a bar prompt, the
new bar prompt overwrites the earlier one.

If you define a bar for a number that exceeds the total number of lines found in the
pop-up window, then the prompts scroll vertically inside the pop-up window.

If a BAR value is missing, that row in the popup is left blank, and the selection bar
skips over it.

If the length of the bar prompt exceeds the horizontal line length in the pop-up
window, the prompt is truncated. Horizontal scrolling is not permitted in a pop-up
window.

You must define at least one bar for a pop-up window; otherwise, the pop-up window
is empty and cannot be activated.

The MESSAGE expression is displayed centered on the last line of the screen outside
the pop-up window. The DEFINE BAR message overwrites any message text you
have written with the DEFINE POPUP command. The message is limited to 79
characters; all excess characters are truncated. The message is tied to the bar prompt
with which it is defined.

If SET STATUS is ON, the message appears at the bottom of the screen when the
cursor in the pop-up window is on the bar prompt that was defined in the same
DEFINE BAR command. If SET STATUS is OFF, message location is determined by
the AT clause of the SET MESSAGE command.

122 Language Reference

DEFINE BAR
DEFINE BOX

Each bar prompt can have its own message line of 79 characters or less.

Use the SKIP option to display the desired BAR, but not allow its selection. Use the
SKIP FOR option to SKIP the BAR only when the FOR condition is true.

Example

The following lines define menu choices for the View_pop pop-up menu:

. Medit = .F.

. DEFINE POPUP View_pop from 3,4 T0 8,19

. DEFINE BAR 1 OF View_pop PROMPT "Add new record"

. DEFINE BAR 2 OF View_pop PROMPT "Edit"

. DEFINE BAR 3 OF View_pop PROMPT REPLICATE("-",16) SKIP
. DEFINE BAR 4 OF View_pop PROMPT "Delete" SKIP FOR Medit
. ACTIVATE POPUP View_pop

BAR 3 displays a horizontal line to separate the Delete choice from the Add and Edit
choices. The SKIP option is included to prevent the user from selecting the separator
line. A logical memory variable like Medit in this example can be defined to make the
Delete option available only while Medit evaluates to a logical false (.F.). The
selection bar cannot be placed on bar 4 while Medit remains true, but can be selected
when Medit is false (.F.).

See Also

ACTIVATE POPUP, BAR(), DEACTIVATE POPUP, DEFINE POPUP, ON
SELECTION POPUP, POPUP(), PROMPT(), SET MESSAGE, SET STATUS,
SHOW POPUP

DEFINE BOX

The DEFINE BOX command defines a box to be printed around lines of text.

Syntax

DEFINE BOX FROM <print column> TO <print column>
HEIGHT <expN> [AT LINE <print line>] [SINGLE/DOUBLE/
<border definition string>]

Usage
Use this command to define a box around printed report text for enhanced appearance.

This command defines the beginning column on the left and last column on the right,
the beginning line for the top of the box, and the height for the box. If no AT LINE is
specified, the box begins at the current line.

Chapter 2, Commands 123

DEFINE BOX

The border definition string follows the same rules as the SET BORDER command.
You may specify a list of character codes for the border string, as described in SET
BORDER. The default border is a single line. The PANEL selection of SET BORDER
is not supported.

To enable the printing of boxes, the _box system memory variable must be set to true
(.T.). The box will print when _pline equals the top row of the box; the box will be
part of the streaming output of dBASE IV.

Example

In the following program, the SPACE() function overwrites 51 characters on the top
and bottom lines of the box, so that only the corners print. The assignment statement
following SCAN causes the box to print (_box = .T.) for the first and last three
records, but not otherwise.

*Box.prg
SET TALK OFF
CLEAR
USE Stock ORDER Part_name
_box = .F.
DEFINE BOX FROM 10 TO 70 HEIGHT 8
2?7 SPACE(51) AT 15
_box = .T.
?
Cnt =1
SCAN
_box = (Cnt < 4 .0R. Cnt > (RECCOUNT() - 3))
?? Part_name AT 12, Descript
2
Cnt = Cnt + 1
ENDSCAN

27 SPACE(51) AT 15
?

124 Language Reference

DEFINE BOX
DEFINE MENU

The results of the above code look like this:

do box
BOOKCASE UooD, TEAK, 2-SHELF
CHAIR, DESK LEATHER, BROWN, HIGHBACK
CHAIR, DESK LEATHER, BROWN, HIGHBACK
CHAIR, DESK LEATHER, BROUN
CHAIR, DESK LEATHER, BROWN
CHAIR, SIDE PLASTIC, GREY

DESK, EXECUTIVE 5-FOOT WOOD, OAK, FANCY
FILE CABINET,Z DRAWER METAL, BROUN
FILE CABINET,Z DRAWER METAL, BLACK
FILE CABINET,4 DRAWER METAL, BROUWN

LAMP, FLOOR BRASS, 6-FOOT, ENGLISH

LAMP, FLOOR BRASS, 6-FOOT, ART DECO

LAMP, FLOOR BRASS, 6-FOOT, ENGLISH

SOFA, 6-FOOT LEATHER, BROUWN, HIGHBACK
SOFA, 6-F0OT UELVET, GREY, FRENCH

SOFA, 8-FOOT VELVET, BLUE, FRENCH

TABLE, END Uoob, OAK, 2-FOOT, SQUARE

Cormand [[b ~dbasensamplesssTock Jiree For 1 ——Jrie)]

Figure 2-2 Boxed output

See Also
@...TO, SET BORDER, _box
Chapter 5 describes the system memory variables.

DEFINE MENU

Use DEFINE MENU in conjunction with the DEFINE PAD command to define a
menu.

Syntax
DEFINE MENU <menu name> [MESSAGE <expC>]

Usage

This command is the first step in creating a bar menu; by itself it does not create a bar
menu. This command can only assign a name to a bar menu and associate an optional
message with the menu name.

Chapter 2, Commands 125

DEFINE MENU

126

Use this bar menu name with the DEFINE PAD command to define the menu pads and
their messages.

If SET STATUS is ON, the optional MESSAGE appears centered at the bottom of the
screen; otherwise, the location is determined by the AT clause of the SET MESSAGE
command. The message is limited to 79 characters; excess characters are truncated.

Each menu pad may have its own message, or one message may be used with all bar
menu options. If a PAD is assigned a message, the message specified with the
DEFINE MENU command is overwritten.

Example

* Create a menu called Main and define its pads

DEFINE MENU Main

DEFINE PAD View OF Main PROMPT "Add/Edit" AT 2,4
DEFINE PAD Goto OF Main PROMPT "Goto/Search" AT 2,16
DEFINE PAD Print OF Main PROMPT "Print" AT 2,30
DEFINE PAD Exit OF Main PROMPT "Exit" AT 2,38

* Assign popups to the pads

ON PAD View OF Main ACTIVATE POPUP View_pop

ON PAD Goto OF Main ACTIVATE POPUP Goto_pop

ON PAD Print OF Main ACTIVATE POPUP Prin_pop

ON PAD Exit OF Main ACTIVATE POPUP Exit_pop

* Define the View pad’s first popup and first bar

DEFINE POPUP View_pop FROM 3,4 MESSAGE “"Select a View"
DEFINE BAR 1 OF View_pop PROMPT "Choose View"

* Take a look at the menu to see how it appears

ACTIVATE MENU Main

See Also

ACTIVATE MENU, DEACTIVATE MENU, DEFINE PAD, MENU(), ON PAD, ON
SELECTION PAD, PAD(), SET MESSAGE, SET STATUS

Language Reference

DEFINE PAD

DEFINE PAD

Use the DEFINE PAD command to define a single pad in a bar menu. To define more
than one pad in a menu, repeat the command with the same menu name until all the
pads are defined.

Syntax

DEFINE PAD <pad name> OF <menu name> PROMPT <expC>
[AT <row>,<col>] [MESSAGE <expC>]

Usage

Use this command to define each pad for a given bar menu. The pad name follows the
naming rules for field and alias names. If you use an existing pad name to define a
different pad, the earlier pad is overwritten.

The <menu name> option must be previously defined with the DEFINE MENU
command.

The PROMPT text is displayed inside the menu option. Menu prompts can be
positioned anywhere on the screen where there is room for the prompt message. The
optional screen coordinates define the beginning point for the prompt text. You can
create a vertical menu bar by using one set of column coordinates and incrementing
the row coordinates for each pad, or by using a popup.

If you do not specify coordinates, the program places the first prompt at the upper left
corner of the screen. It places each subsequent prompt on the same line, one space
after the end of the previous prompt. SET SCOREBOARD OFF to prevent the
SCOREBOARD information from writing over menu PADS on the first line (line
zero) of the display.

To navigate the prompts, use the — and < keys.

The MESSAGE option defines a message and associates it with the PAD. The
message line can be up to 79 characters long; any excess characters are truncated. If
SET STATUS is ON, the message appears centered at the bottom of the screen when
the cursor is on the pad associated with it; otherwise, the location is determined by the
AT clause of the SET MESSAGE command. The message text overrides any other
message defined with the DEFINE MENU command.

The total number of pads you can define is limited only by the available memory.

Chapter 2, Commands 127

DEFINE PAD

128

Example

Before you define a pad, you define its menu. After defining pads, you define the pop-
up menus for each one, then the bars that will appear on the popups. The following
program example creates a menu named Main and its four pads, with popups for each
pad and a bar for the first popup.

* Create a menu called Main and define its pads

DEFINE MENU Main

DEFINE PAD View OF Main PROMPT "Add/Edit" AT 2,4
DEFINE PAD Goto OF Main PROMPT "Goto/Search™ AT 2,16
DEFINE PAD Print OF Main PROMPT "Print" AT 2,30
DEFINE PAD Exit OF Main PROMPT "Exit" AT 2,38

* Assign popups to the pads

ON PAD View OF Main ACTIVATE POPUP View_pop

ON PAD Goto OF Main ACTIVATE POPUP Goto_pop

ON PAD Print OF Main ACTIVATE POPUP Prin_pop

ON PAD Exit OF Main ACTIVATE POPUP Exit_pop

* Define the View pad’s first popup and first bar

DEFINE POPUP View_pop FROM 3,4 MESSAGE "Select a View"
DEFINE BAR 1 OF View_pop PROMPT "Choose View"

* Take a look at the menu to see how it appears

ACTIVATE MENU Main

After this code executes, the ACTIVATE MENU command makes the menu appear on
the screen.

See Also

ACTIVATE MENU, DEFINE MENU, ON PAD, ON SELECTION PAD, PAD(), SET
MESSAGE, SET SCOREBOARD, SET STATUS

Language Reference

DEFINE POPUP

DEFINE POPUP

A pop-up menu is a screen window containing special fields, messages and a border.
The DEFINE POPUP command defines a pop-up window’s name, location, border,
prompts, and message line.

Syntax

DEFINE POPUP <popup name> FROM <row1>,<col1>
[TO <row2>,<col2>] [PROMPT FIELD <field name>
/PROMPT FILES [LIKE <skeleton>]/PROMPT STRUCTURE]
[MESSAGE <expC>]

Usage
The DEFINE POPUP command arguments are as follows:

Pop-up menu names follow the same naming rules as the alias and field names. You
must assign a name to the pop-up menu so that you can call the pop-up menu to the
screen after you define it.

The FROM and TO coordinates define the top left and the bottom right corners of the
pop-up window. This window covers up any other text that is displayed on the screen.
Because only one popup can be active, several popups may be defined at the same
screen coordinates. Deactivated popups are erased from the screen.

The TO coordinates are optional; if you omit them, dBASE IV defines the window to
be wide enough to accommodate the longest field and long enough to include the
maximum number of lines. The screen limits a pop-up window to the last column and
the line above the status bar. If the status bar is off, the last line is the screen size
minus 1. The minimum size for a popup is one displayable row and one displayable
column.

If you use the TO coordinates, prompts that are too long to fit in the pop-up window

are truncated to fit. If all the prompts will not fit in the pop-up window, they scroll
vertically within the pop-up menu window as you move the cursor.

There are three forms of the PROMPT option: PROMPT FIELD, PROMPT FILES,
and PROMPT STRUCTURE. If you use any of the three when you define a pop-up
menu, then you cannot later use the DEFINE BAR command with that pop-up menu
name.

The PROMPT FIELD option displays the contents of the named field for each record
of the database file in the pop-up window. You cannot use a memo field in the
PROMPT FIELD option. You may, however, precede a field name with an alias.

To navigate a popup, use the T and | keys, or the first letter of the prompt. To select a
file or a prompt action, press .

Chapter 2, Commands 129

DEFINE POPUP
DEFINE WINDOW

If you enter the FILES option, the CATALOG filenames are displayed in the pop-up
window. Specifying the LIKE <skeleton> parameter restricts the files displayed in the
pop-up window to those that match the skeleton. Without the LIKE <skeleton> filter,
all files (up to 200) in the active catalog are displayed.

If you use the STRUCTURE option, you see the defined fields in the pop-up window.
Defined fields consist of all the fields in the active database file, or the fields in the
SET FIELDS list if the SET FIELDS command is ON.

The MESSAGE expression is displayed centered in the bottom line of the screen,
outside the pop-up window unless you reposition it with the AT clause of the SET
MESSAGE command. If SET STATUS is ON, you cannot reposition the message; it is
always centered at the bottom of the screen. The maximum message is 79 characters
long; any excess characters are truncated. The message line is the only way to include
a message text for the FIELD, FILES, or STRUCTURE options. This message has
priority over any other text displayed by the SET MESSAGE TO command.

Example

Here are four pop-up menus:

. DEFINE POPUP View_pop FROM 3,4 TO 8,19
. DEFINE POPUP Goto_pop FROM 3,16 TO 6, 28
. DEFINE POPUP Prin_pop FROM 3,30 T0 7,4

. DEFINE POPUP Exit_pop FROM 3,38 T0 6,5

These pop-up menus have coordinates that would position them directly below
corresponding pads on the menu bar of the menu Main in the example of the DEFINE
PAD command.

See Also

ACTIVATE POPUP, BAR(), DEFINE BAR, ON SELECTION POPUP, POPUP(),
PROMPT(), SET MESSAGE, SET STATUS

DEFINE WINDOW

130

The DEFINE WINDOW command defines windows, borders, and screen colors for
windows.

Syntax

DEFINE WINDOW <window name> FROM <row1>,<col1>
TO <row2>,<col2> [DOUBLE/PANEL/NONE/
<border definition string>] [COLOR [<standard>] [,<enhanced>]
[,<frame>]]

Language Reference

DEFINE WINDOW

Usage

Use this command to define the screen coordinates and the display attributes of a
window and its borders. The FROM coordinates determine the upper left row and
column for the window, and the TO coordinates determine the bottom right row and
column. Each time you activate a window, its coordinates are checked against the
number of lines the screen can display, and the presence of the status line.

The border default is a single-line box. Alternately, you can define an inverse video
panel, define a double-line box, or suppress borders altogether. Border definition
strings use ASCII codes, as explained for the SET BORDER command.

If you change the SET BORDER parameters, the window retains the border format
that was in effect when it was defined. If no color is specified, screen attributes follow
the colors that were in effect on the screen when the window was defined.

Avoid using ASCII codes 7, 8, 10, 12, 13, 27, and 127 in border definitions. These
codes display on the screen, but cause problems with print drivers, or if you use Print
Screen to print out the screen contents.

The COLOR option allows you to set the foreground and background colors that will
appear for standard and enhanced characters. The <frame> parameter, like other color
settings, lets you set standard and enhanced attributes, but these apply to the window’s
frame or border. If you do not specify COLORs, dBASE 1V defaults to the Config.db
specifications.

You can store up to 20 window definitions in memory at one time depending on the
amount of memory available.

Example

This example opens a small window at the upper right corner of the screen. The
sample border definition string uses the asterisk character (ASCII 42) for the borders,
and the number 1 (ASCII 49) at the upper left corner as an optional window number. It
uses a plus sign (ASCII 43) for the other three.

. DEFINE WINDOW W1 FROM 1,50 T0 10,79 ;
CHR(42),CHR(42),CHR(42),CHR(42),CHR(49),CHR(43),CHR(43),CHR(43)
. ACTIVATE WINDOW W1

See Also

ACTIVATE WINDOW, DEACTIVATE WINDOW, RESTORE WINDOW, SAVE
WINDOW, SET BORDER TO, SET COLOR, SET STATUS

Chapter 2, Commands 131

DELETE

DELETE

DELETE marks records in the active database file for deletion.

Syntax
DELETE [<scope>] [FOR <condition>] [WHILE <condition>]

Defaults

Unless otherwise specified by the scope or a FOR or WHILE clause, only the current
record is marked for deletion.

Usage

This command does not remove records from the database file. DELETE marks
records for deletion, and PACK removes them from the database file. You can unmark
records already marked for deletion with RECALL.

When you use DISPLAY and LIST to call up records, those marked for deletion are
indicated by an asterisk (*) in the first position of the record.

A With full-screen commands such as BROWSE or EDIT, records marked for deletion
are indicated by Del on the status bar. In this mode, Ctrl-U both deletes and reinstates
records. If SET STATUS is OFF and SET SCOREBOARD is ON, the Del marker is
displayed on the scoreboard.

Record Pointer

DELETE does not reposition the record pointer unless you give the scope, a FOR
clause, or a WHILE clause. Therefore, if you're at the end of the file, as after LIST or
DISPLAY ALL, issuing DELETE has no effect.

Example

To mark record 6 for deletion:

. DELETE RECORD 6
1 record deleted
. RECALL ALL

1 record recalled

See Also

DELETED(), PACK, RECALL, SET DELETED, SET SCOREBOARD, SET
STATUS, ZAP

132 Language Reference

DELETE FILE
DELETE TAG

DELETE FILE

DELETE FILE is an alternate form of the ERASE command. See the ERASE
command entry in this chapter.

DELETE TAG

DELETE TAG deletes the indicated tags from a multiple index (.mdx) file if tag
names are specified.

Syntax

DELETE TAG <tag name 1> [OF <.mdx filename>]
[,<tag name 2> [OF <.mdx filename>]...]

Usage

Multiple index (.mdx) files may contain up to 47 tags, each of which may impose an
index order on the database file.

A production .mdx file is an .mdx file that is opened whenever the database file is
USEd. Production .mdx files have the same name as their associated database files,
but with an .mdx file extension. The database file header contains an indication that
there is an associated production .mdx file.

If you no longer need one or more of the tags in any active .mdx file, you can remove
it with the DELETE TAG command. Deleting a tag permanently removes it from the
.mdx file, and restores space to the file. DELETE TAG opens a slot for a new tag to be
created in the .mdx file. The multiple index file containing the tag must be open for
DELETE TAG to work, but the tag that is being deleted does not have to be the
controlling index.

If you delete all tags in a multiple index file, the .mdx file is also deleted. If you delete
the production .mdx file, the database file header is updated to indicate that no
production .mdx file is associated with this database file. If a catalog is open, it is also
updated.

Using the OF clause, you may specify the .mdx file that contains the tag. If the tag is
contained in an .mdx file other than the production .mdx file, or if two open .mdx files
contain the same tag name, you should include the OF clause in the command to
indicate the correct tag for deletion. If a tag cannot be found, the error message TAG
not found appears.

Special Case

In a multi-user environment, the database file must be in exclusive use before you can
issue DELETE TAG. If the database file is not in exclusive use, the error message
Exclusive use of database is required appears.

Chapter 2, Commands 133

DELETE TAG
DEXPORT

Example
To delete the Client tag from the Client production .mdx file:

. DELETE TAG Client OF Client

See Also

COPY INDEX, COPY TAG, DESCENDING(), FOR(), INDEX, MDX(), NDX(),
ORDER(), SET INDEX, SET ORDER, TAG(), TAGCOUNT(), TAGNO(), UNIQUE,
USE, SET EXCLUSIVE

DEXPORT

This command creates a Binary Named List (BNL) file from a screen, report, or Label
design file.

Syntax
DEXPORT SCREEN/REPORT/LABEL <filename> [TO <BNL filename>]

Options
<filename> is the name of the dBASE design object file.

<BNL filename> is an optional name for the output file. If omitted, DEXPORT uses
the root name of the design file and adds the file extensions listed in Table 2-7 to BNL
files.

Table 2-7 Binary Named List file extensions

Design File BNL File Extension
Screen .snl

Report fnl

Label Anl
See Also

DGEN()

See Programming in dBASE IV for more information on dBASE IV generated code.

134 Language Reference

DIR

DIR displays a list of the database files in the current directory.

Syntax
DIRECTORY/DIR [[ON] <drive>:] [[LIKE] [<path>] < skeleton>]

Defaults

If you do not specify a filename or skeleton, the DIR command provides directory
information only on database files. If you do not specify a path or drive, the DIR
command provides information only on the current drive and directory. These may
have been modified by SET DEFAULT or SET DIRECTORY.

Usage

For database files, DIR displays the files, number of records, date of last update, file
size (in bytes), total number of files displayed, total number of bytes for the displayed
files, and the total number of bytes remaining on disk. If you specify any file type
other than .dbf in the command, DIR displays only the filenames.

The DIR command differs from the DOS DIR command. In dBASE 1V, if you type
DIR followed by the name of a subdirectory of the current directory, the message None
appears. This is because dBASE IV was looking for a database file by that name. The
same command entered on the DOS command line would display a list of the files in
the named directory.

In the dBASE DIR command, the path specification requires a terminating backslash.
In dBASE IV, if you type:

. DIR \DBASE\SAMPLES

will show a file called Samples.dbf if it exists. Entered at the DOS prompt, the same
command would list the files in the Samples directory. To obtain the same listing at the
dot prompt, you would have to enter:

. DIR \DBASE\SAMPLES\

Examples
To display the database files in the current directory:

. DIR

Chapter 2, Commands 135

DIR
DISPLAY

To display all filenames in the current directory:
. DIR *.*

To display all compiled program files in the \SALES subdirectory:
. DIR \SALES*.dbo

To display filenames that are three to five characters long where D is the third
character:

. DIR 220272+
To display all .dbf files in another directory called Sales:

. DIR \SALES\

See Also
LIST/DISPLAY FILES, SET DEFAULT, SET DIRECTORY

DISPLAY

136

The following DISPLAY commands are similar to their LIST counterparts. If you use
the DISPLAY form of the command, only one piece of information is presented at a
time, and a prompt piece may appear asking you to press a key to see the next screen.
Both the DISPLAY and LIST forms allow you to send output to a disk file by using
the TO FILE <filename> option.

LIST without an argument uses ALL as its default scope. DISPLAY without an
argument uses the current record only.

Please refer to the following LIST commands for a discussion of both the LIST and
DISPLAY forms:

LIST/DISPLAY FILES
LIST/DISPLAY HISTORY
LIST/DISPLAY MEMORY
LIST/DISPLAY STATUS
LIST/DISPLAY STRUCTURE
LIST/DISPLAY USERS

Language Reference

DO executes a dBASE command file or procedure. If the command file or procedure
file has not been COMPILEG, it is first parsed, then compiled and saved as an object
file with a .dbo extension; then, the .dbo file is executed.

DO may also pass parameters to the named program.

Syntax

DO <program filename>/<procedure name>
[WITH <parameter list>]

Usage

NOTE All dBASE IV version 1.0 object code files must be recompiled

in dBASE IV version 2.0 in order to run under version 2.0. Recompilation will in
most instances occur automatically. The commands that run a dBASE object file
will check the version of the code file and recompile it if it is a version 1.0 code
file, and the corresponding source file can be found. dBASE IV will search the
current directory and all directories in the dBASE path for source files. The
recompile will fail if the source file has been renamed or cannot be found, or if
the file was created with the DBLINK utility.

Other versions of dBASE 1V object code files need not be recompiled to run
under version 2.0. Recompilation is recommended, however, if you want to take
advantage of version 2.0 enhancements.

The filename must include a path, if the file is not on the current directory or on a path
set with the SET PATH or SET DIRECTORY command.

You should not, however, precede the names of procedures within a procedure file
with a path. The path for procedure files should be stated in the SET PROCEDURE
command.

The following search order is used when you issue a DO command.

1. Look in the file SYSPROC = <filename> if specified in Config.db.
2. DO searches for a procedure in the current .dbo file, if one is being executed.

3. DO searches for a procedure in a procedure file, if a SET PROCEDURE command
activated one. After locating the first instance, DO does not look for other
procedures with the same name.

DO searches for a procedure in other open .dbo files.
Look in the SET LIBRARY file if active.
DO searches for a .dbo file with the associated name.

Nk

DO searches for a .prg file with the associated name, compiles it, and then
executes the resultant .dbo file.

Chapter 2, Commands

137

138

8. Look for a .prs file of that name.

DO determines whether the file is an object or source file, and executes the file if it is
an object (.dbo) file, or compiles and executes the file if it is a source (.prg or .prs) file.

dBASE IV supports the concept of procedures within any program file by maintaining
a procedure list in every object (.dbo) file. If a source file starts with a command other
than PROCEDURE or FUNCTION, the code is compiled as a procedure and added to
the procedure list in the object file with the same name as the source file. A typical
.prg file such as:

* Main.prg
? "MAIN"
RETURN

is compiled into a .dbo file containing one procedure, Main. When you enter DO
MAIN, this name is used to locate the .dbo file, and then used to locate the procedure
within the .dbo file.

A source file can include more than one procedure, such as:

* Main.prg
? "MAIN"
DO Subb
RETURN

PROCEDURE Subb
? "SUBB"
RETURN

Note that only commands found at the beginning of a file are given the default
procedure name. Commands between RETURN and PROCEDURE cause a compile-
time warning. You may want to keep this code in the program file, but DO will not
execute these commands.

Any procedure found in an active .dbo file is available to the DO command. If A.dbo
calls B.dbo calls C.dbo, all the procedures defined within A, B, and C are available to
any procedure in C. dBASE 1V still supports SET PROCEDURE TO from dBASE 111
and dBASE III PLUS, although this command is only required to gain access to
procedures in a file not activated by DO <filename>.

You can have a maximum of 32 active .dbo files. A .dbo file is active if you open it
with SET PROCEDURE TO, or if a RETURN can pass control back to it.

The total number of open files including database files, index files, format files, and
command files, is determined by the FILES setting in the Config.sys file and FILES
setting in Config.db. The lower of the two settings will prevail. DOS reserves five file
handles for its use. To have 100 files open you need to set the FILES= setting to 99 in
Config.sys. The larger the number, the less room there is in memory for programs and
data.

Language Reference

When the program called by DO is complete, control returns to the calling program (or
to the dot prompt or Control Center if the DO command was issued from either of
those points).

Memory variables and arrays created in the called program must be declared PUBLIC
if they are to be used after the called program terminates. All PRIVATE memory
variables and arrays created within the program are released once the program
terminates.

Because DO first searches for .dbo files, you should not change the .dbo file extension
after compilation. You also should not rename a .dbo file. DOing a renamed .dbo
causes a Procedure not found error message when dBASE IV is unable to locate the
main procedure new name of the .dbo.

The dBASE 1V internal text editor, which can be accessed from MODIFY
COMMAND or the Control Center, will delete an old .dbo file when a .prg file is
modified. A subsequent DO command will recompile the .prg file and create a new
.dbo file before executing the procedure. As other text editors do not delete the old
.dbo file, SET DEVELOPMENT allows you to verify that DO does not execute an
outdated .dbo file.

If SET DEVELOPMENT is ON and you use an external text editor to edit existing
program source (.prg) files, DO compares the time and date stamp of the source file
with the time and date stamp of its associated .dbo file. If the .dbo file is older than the
source file, DO recompiles the source file before executing it.

Options

The WITH option allows parameters to be passed to a procedure. The parameter list
can contain any valid dBASE expression, and you may pass up to 50 parameters. No
more than ten of the parameters can be literal values, the rest must be variables. Field
names take precedence over memory variables; so, to specify a memory variable as a
parameter rather than a field with the same name, precede the memory variable name
with M->.

TIP Avoid DOing a command file recursively. A command file may contain a
DO command that executes itself over again, or the command file may DO a
subroutine, and that subroutine may DO the original command file. Both are
recursive calls. The error message Procedure/function call nested too deep may
eventually result. dBASE IV allows a default of up to 16 DOs, but the number of
nested DOs is limited by the amount of memory you have.

Use a RETURN rather than a DO to return control to the calling program. If a
command file needs to execute its own commands again, the commands should
be contained in a DO WHILE loop. The command file should not DO itself
again.

Using the DO command with a procedure file of any type extension produces a
.dbo file. However, you should use the appropriate command for each type of
file, such as REPORT FORM, to produce the correct compiled file (in this case,
fro).

Chapter 2, Commands 139

Special Case

If the input file has a .upd extension, DO generates a .dbo file and executes the update
query. You may rename this .dbo extension to .upo, if you want to keep your update
query files separate from your program files.

Examples

The following program file, Areacalc.prg, calculates the area of a rectangle based on
the formula area = length * width:

* Program name: Areacalc.prg
PARAMETERS M_length, M_width, M_area
M_area = M_length * M_width

RETURN

* EQP: Areacalc.prg

To execute the program file Areacalc, pass the values 4 and 6 to the memory variables
M_length and M_width respectively, and return the correct value to the memory
variable called M_result:

. M_result =0

0

. DO Areacalc WITH 6, 4, M_result
Compiling line 5

24

. ? M_result

24

See Also

CANCEL, COMPILE, CREATE/MODIFY QUERY/VIEW, DEBUG, FUNCTION,
MODIFY COMMAND, PARAMETERS, PRIVATE, PROCEDURE, PUBLIC,
RESUME, RETURN, SET DEBUG, SET DEVELOPMENT, SET ECHO, SET
LIBRARY, SET PROCEDURE, SET TRAP, SUSPEND

Chapter 15 of Programming in dBASE IV

Language Reference

DO CASE/ENDCASE

DO CASE/ENDCASE

DO CASE is a structured programming command that selects only one course of
action from a set of alternatives.

Syntax

DO CASE
[CASE <condition>
<commands>]
[CASE <condition>
<commands>]

[OTHERWISE
<commands>]
ENDCASE

Usage

ENDCASE terminates the DO CASE structure. Command pairs such as DO
CASE...ENDCASE, IF...ENDIF, and DO WHILE...ENDDO must be properly
nested within DO CASE. Nested DO CASEs are permitted.

CASE <condition> sets up a condition, or logical expression such as A = B or Numvar
< 11, for evaluation. When the condition evaluates to a logical true (.T.), all
subsequent commands are carried out until any one of the following commands is
reached: another CASE, OTHERWISE, or ENDCASE. DO CASE can compile
correctly with no CASE or no OTHERWISE statements.

If no CASE statements evaluate logical true, and there is no OTHERWISE statement,
the program processes the first command following ENDCASE. OTHERWISE causes
the program to take an alternative path of action when all previous CASE statements
evaluate to logical false (.F.).

TIP Only one of the possible cases is acted upon, even if several apply. In
. situations where only the first true instance is to be processed, the DO CASE
command is preferable to the IF command.

The CASE construct is often used when there are a number of exceptions to a
condition. The CASE <condition> statements can represent the exceptions, and the
OTHERWISE statement the remaining situation.

Chapter 2, Commands 1M

DO CASE/ENDCASE
DO WHILE/ENDDO

Example

Compare this example with the example given for the IF command. The following
CASE construct determines the magnitude of a variable and displays an appropriate
message:

DO CASE
CASE M_value > 100
? "Value is over 100."
CASE M_value > 10
? "Value is over 10."
CASE M_value > 1
? "Value is over 1."
OTHERWISE
? "The value is 1 or less."
ENDCASE

See Also
DO, DO WHILE, IF, IIF()

DO WHILE/ENDDO

DO WHILE is a structured programming command that allows command statements
between it and its associated ENDDO to be repeated as long as the specified condition
is true.

Syntax

DO WHILE <condition>
<commands>
[LOOP]

[EXIT]

ENDDO

Usage

DO WHILE <condition> opens a structured procedure that processes subsequent
commands only while the condition evaluates to true (.T.): for example, .NOT. EOF()
.AND. Mvarl = 11.

If the condition evaluates to .T., all subsequent commands are carried out until an
ENDDO, LOOP, or EXIT is encountered. ENDDO and LOOP return control to the
DO WHILE command for another evaluation of the condition. EXIT passes control to
the statement following the ENDDO.

LOOP returns control to the beginning of a DO WHILE...ENDDO program structure.
LOOP prevents the execution of the remaining commands in the DO WHILE
construct.

142 Language Reference

DO WHILE/ENDDO

EXIT transfers control from within a DO WHILE...ENDDO loop to the command
immediately following the ENDDO.

ENDDO must terminate a DO WHILE structure. The space following the ENDDO on
the command line may be used for comments; the comment indicator, &&;, is not
needed. Comments or symbols used here will appear among compile-time warnings.

Any structured commands within a DO WHILE...ENDDO structure must be properly
nested. Nested DO WHILEs are permitted.

If the condition evaluates to a logical false (.F.), dBASE IV skips all commands
between DO WHILE and ENDDO and goes to the command following ENDDO.

dBASE IV limits the number of nested DO WHILEs to 32 per procedure.

Programming Notes

You can use macros in the conditional portion of a DO WHILE loop only if the value
of the variable in the macro does not change, because the DO WHILE statement is
parsed only the first time through the loop. After the first parsing, the DO WHILE
statement is executed from memory.

Macro substitution must also be within the lowest nested level of a program and
within the lowest nested DO WHILE loop. If the DO WHILE loop that contains the
macro has a nested DO WHILE loop or DO <procedure name> within it, the condition
of the loop will always evaluate to logical .T. after the first evaluation, and the
program will remain in an endless loop.

Examples

The first example shows how to correctly use a macro in the conditional portion of a
DO WHILE loop executing in a dBASE program file:

* This is an example of the correct way to use a macro in a DO WHILE statement.
*
USE Transact ORDER Client_id
Condition = [UPPER(Client_id) = "C00001"]
FIND C00001
DO WHILE &Condition. .AND. .NOT. EOF()
* The value of Condition never changes within the loop.
? Order_id, Date_trans, Total_bill
SKIP
ENDDO
CLOSE DATABASE

The next program file example illustrates the correct use of the EXIT option. The
program lets you view five records from the Stock database file, and then decide
whether you want to see the next five or back up and see the previous five.

Chapter 2, Commands 143

DO WHILE/ENDDO
EDIT

* Program name: Partial.prg
USE Stock
DO WHILE .NOT. EOF()
CLEAR
LIST NEXT 5 Order_id, Part_name, Item_cost
;
WAIT "Press X to stop, B to back up, Spacebar to continue." TO Mstop
DO CASE
CASE Mstop $ "Xx" .OR. EOF()
EXIT
CASE Mstop $ "Bb"
SKIP -9
OTHERWISE
SKIP
ENDCASE
ENDDO
* EQP: Partial.prg

See Also
&, DO, DO CASE, IF, RETURN, SCAN

EDIT

EDIT is a full-screen command you use to display or change the contents of a record
in the active database file or view.

Syntax

EDIT [NOINIT] [NOFOLLOW] [NOAPPEND] [NOMENU] [NOORGANIZE]
[NOEDIT] [NODELETE] [NOCLEAR] [<record number>] [FIELDS
<field list>] [<scope>] [FOR <condition>] [WHILE <condition>]

Defaults

If you use EDIT without a scope, or without a FOR or WHILE clause, you can move
through all records in the database file limited only by any conditions or SET FILTER.

Using a scope, or a FOR or WHILE clause, disables the Go To menu and the F2 key
for shifting to BROWSE.

Usage
EDIT and CHANGE are identical commands.

You can change from EDIT to BROWSE by pressing the F2 Data key. EDIT displays
data according to the definitions set in a format (.fmt) file if one is active, or in a
default vertical field arrangement if a format is not active. BROWSE displays multiple
records in a tabular format.

144 Language Reference

EDIT uses the standard full-screen cursor control keys. The arrow keys move the
cursor within a record. PgUp backs up to the previous record. PgDn advances to the
next record or to the next screen if the fields extend beyond one screen. To exit and
save all changes, press Ctrl-End. Press Esc to exit and save changes to all but the
current record. To EDIT a memo field, press Ctrl-Home or F9 Append when the
cursor is positioned on the memo field name.

Unless you use the NOAPPEND option, EDIT allows you to append records to a
database file if you move the cursor past the last record of the file. In this way, it
works just like the full-screen APPEND command.

When called from BROWSE, EDIT respects all the BROWSE command line options
except COMPRESS, FREEZE, LOCK, WIDTH, and WINDOW. BROWSE also
respects all EDIT command line options. EDIT reverts to full screen, and cannot be
used in a window even if you call it from a BROWSE window by pressing F2 Data.

When the EDIT command is completed, you return to your point of origin: the dot
prompt, the next line of a .prg file, or the Control Center.

Options

NOINIT allows the command line options that you used with a previous EDIT
command to be used in the current EDIT. NOINIT instructs the EDIT command not to
initialize the EDIT table, but to use the table from the most recent EDIT instead.

NOFOLLOW applies only to indexed data. If you specify NOFOLLOW, editing a key
field in a record repositions the record to its new position in the index order; the record
that then takes the old record’s place becomes the current record on the screen. If you
do not specify NOFOLLOW, the edited record is repositioned after the key is changed;
the record following the newly positioned record becomes the current record on the
screen.

NOAPPEND prevents you from adding records to the database file during the edit.
NOMENU prevents access to the EDIT menu bar.

NOORGANIZE brings up a menu bar without the Organize menu. The Organize
menu options to index, sort, and remove records are therefore unavailable. You cannot
use both NOORGANIZE and NOMENU in the same EDIT.

NOEDIT prevents you from changing any data presented on screen. You can add
records if you move the cursor to the end of the file, and you can mark records for
deletion.

NODELETE prevents you from deleting records during the edit.
NOCLEAR keeps the record’s image on the screen after you exit the EDIT.

<record number> starts the edit on the specified record, but lets you move to other
records in the file. You may also use the keyword RECORD, which is one of the
options of <scope>. If you use the <scope> keyword RECORD, however, EDIT is
limited to one record, and does not allow you to move to other records in the file.
Because EDIT RECORD <record number> limits the edit to the specified record,
EDIT RECORD <record number> and EDIT <record number> are not identical.

Chapter 2, Commands 145

146

Special Case

In a multi-user environment, if the file is not opened in EXCLUSIVE mode and if you
have neglected to lock a record with Ctrl-O or LOCK() before making a change,
dBASE IV attempts to lock the record and any related records as soon as you press a
key that is not a navigation key.

Navigation Keys
The following table lists the navigation keys that you can use in EDIT.

Table 2-8 Navigation keys

Key Action

F1 Help Help

F2 Toggle BROWSE/EDIT

F3 Previous field

F4 Next field

F5-F9 No action

F10 Menu

Shift-F2 Transfer to query design
Shift-F3 Repeat find, backward
Shift-F4 Repeat find, forward
Shift-F5 — Shift-F7 No action

Shift-F8 Copy same field from previous record
Shift-F9 Print menu

Shift-F10 Macro (keyboard) processing
See Also

BROWSE, CHANGE, CONVERT, CREATE/MODIFY QUERY/VIEW, MODIFY
COMMAND, SET DESIGN, SET FIELDS, SET FORMAT, SET LOCK, SET
REFRESH, SET WINDOW OF MEMO

Language Reference

EJECT
EJECT PAGE

EJECT

EJECT causes the printer to advance the paper to the top of the next page. EJECT
affects only the printer. Greater functionality is available in the EJECT PAGE
command.

Syntax
EJECT

Unless you have set the _padvance system variable to "LINEFEEDS", EJECT issues a
form feed (ASCII code 12) to the printer. If _padvance is "LINEFEEDS", EJECT
issues line feeds (ASCII code 10) to position to the top of form.

For proper printer operation, you must initially set the paper to the top of the form.
Refer to your printer manual for instructions.

EJECT resets PROW() and PCOL() to zero.

TIP In a program file, you may want to verify the printer is connected and on-
line with PRINTSTATUS() before issuing an EJECT.

See Also

777, EJECT PAGE, ON PAGE, PCOL(), PRINT, PRINTSTATUS(), PROW(), SET
PRINTER

Chapter 5, “System Memory Variables,” includes a discussion of _padvance, _pageno,
_pcolno, and _plineno.

EJECT PAGE

EJECT PAGE either advances the streaming output to the defined ON PAGE handler
on the current page, or to the beginning of the next page.

Syntax
EJECT PAGE

Usage

If you defined an ON PAGE handler, EJECT PAGE determines whether the current
line number (_plineno) is before or after the ON PAGE line.

Chapter 2, Commands 147

EJECT PAGE
ERASE

1. If _plineno is before the ON PAGE line, EJECT PAGE sends the appropriate
number of line feeds to the output devices to invoke the ON PAGE handler.

2. If you do not have an ON PAGE handler, or if the current line number (_plineno)
is after the ON PAGE line, EJECT PAGE advances the streaming output in the
following manner:

a. If SET PRINTER is ON and _padvance is “FORMFEED”, EJECT PAGE
sends a form feed to the printer.

If SET PRINTER is ON and _padvance is “LINEFEEDS”, EJECT PAGE
sends enough line feeds to the printer to eject the current page. It calculates the
number of line feeds to send to the printer with the formula (_plength -
_plineno).

If the streaming output is routed to another destination (as with SET PRINTER
or SET ALTERNATE), EJECT PAGE uses the same formula (_plength -
_plineno) to determine the number of line feeds to send.

b. It increments the _pageno system memory variable.

¢. Itresets the _plineno and _pcolno system memory variables to zero.

TIP You may EJECT PAGE before the output reaches the ON PAGE line in
order to call the page handler. The page handler should take care of the page

eject, and may optionally write a footer on the current page and a header at the
top of the next page.

Use EJECT, not EJECT PAGE, to simply eject a page on the printer. The EJECT
command does not affect the _pageno and _plineno system variables, although it
does honor _padvance and _pwait.

See Also

2777, EJECT, ON PAGE, SET ALTERNATE, SET PRINTER, _padvance, _pageno,
_plength, _plineno

Chapter 1, “Essentials,” discusses system memory variables and streaming output.

ERASE

148

ERASE removes a file from the disk directory. (DELETE FILE is an alternate form of
ERASE.)

Syntax

ERASE <filename>/?

or

DELETE FILE <filename>/?

Language Reference

ERASE
EXPORT

Defaults
The filename must include the file extension.
Usage

WARNING Even with SET SAFETY ON, ERASE does not ask for
confirmation.

Use ERASE ? to display a list of files in all directories.
You may not delete an open file.

To erase a file in another directory, you must explicitly state the path in the filename or
use ERASE ? to select files from a file list.

If you ERASE a database file (.dbf) that has memo fields, you must separately delete
the .dbt file that contains the memo fields. Also be sure to delete the production .mdx
file associated with a particular .dbf file if an .mdx file exists.

Unlike the DOS ERASE command, dBASE IV does not permit the use of wildcard
characters.

See Also
CLOSE, DELETE TAG, FILE(), SET SAFETY, USE

EXPORT

EXPORT copies the open database file to a file format usable by PFS:FILE, dBASE
11, Framework II, Framework III, Framework IV, RapidFile, or Lotus 1-2-3.

Syntax

EXPORT TO <filename> [TYPE] PFS/DBASEI/FW2/FW3/FW4/
RPD/WKS/WK1 [FIELD <field list>] [<scope>]
[FOR <condition>] [WHILE <condition>]

Usage

EXPORT creates files that can only be used by PFS:FILE, dBASE II, Framework II,
Framework III, Framework IV, RapidFile, or Lotus 1-2-3. You should use the COPY
command to create files that can be read by other software programs.

The records are exported in indexed order if an index file is in use. For PFS:FILE
export, you may use a format (.fmt) file to define the screen format. If a format file is
not activated with SET FORMAT, the default screen as provided in APPEND or EDIT
is used to define the PFS:FILE screen format.

If the dBASE 1V database file was previously IMPORTed from PFS:FILE, it has an
associated format (.fmt) file.

Chapter 2, Commands 149

EXPORT
FIND

If a TO file already exists and SET SAFETY is ON, you are warned before the file is
overwritten. If SET SAFETY is OFF, dBASE 1V simply overwrites the existing file.

v NOTE dBASE IV allows you to build files with fields that may be larger than
your other software can accept. Although these fields are exported, they may be
truncated by other programs. Check the limitations of other programs before
creating files with EXPORT.

For example, when you EXPORT a format file to PFS:FILE, check that it does
not contain more than 200 @...SAY...GET commands. Also, the form should not
specify more than 21 rows, and the rows on your form must be between row 0
and row 20. PFS:FILE cannot read a file that exceeds these limitations.

See Also
COPY, IMPORT, SET FORMAT, SET SAFETY

FIND

FIND searches an indexed database file for the first record with an index key that
matches the specified character string or number. FIND conducts a very rapid record
search.

Syntax
FIND <literal key>

Usage

This command positions the record pointer to the first record in an indexed database
file that matches the character string or number.

FIND and SEEK both use an index, either an index (.ndx) file or multiple index
(.mdx) file tag, to quickly search for data in a database file. The index used is called
the controlling or master index, and it is activated with either the SET INDEX
command, the SET ORDER command, or with the INDEX or ORDER clause of the
USE command. SEEK can search for an expression; FIND cannot.

LOCATE has a similar function to FIND and SEEK, but processes the file sequentially
(record-by-record) and does not require that the file be indexed. LOCATE is
considerably slower.

Because FIND does not evaluate expressions in the command line the way that SEEK
does, you must use a character memory variable with the &, the macro substitution
function, when searching for the variable’s contents:

. FIND &Memvar

150 Language Reference

Substring or partial key searches work only if the search expression matches the index
key, starting with the character at the far left, and if SET EXACT is OFF. FIND will
fail to locate a substring of the key if SET EXACT is ON, because it looks for an exact
match for the entire length of the key. For example, FIND Smi will find "Smith" if
SET EXACT is OFF, but not if SET EXACT is ON.

FIND respects the setting of SET DELETED. If SET DELETED is ON, FIND will not
position the record pointer on a deleted record. FIND also ignores records blocked out
by the SET FILTER command.

Record Pointer
If a match is found, FIND positions the record pointer on the matching record.

SET NEAR affects the positioning of the record pointer after a FIND. If SET NEAR is
ON (or if you have NEAR = ON in the Config.db file) and a matching record is not
found, the record pointer will be on the very next indexed record in the file, just after
the place where FIND expected the matching record to be. The FOUND() function
will still return a false (.F.), because the key was not found; EOF(), however, will not
return a true (.T.), because the record pointer is positioned to a nearly matching record
in the file.

If SET NEAR is OFF, which is the default setting, and the specified character string or
number is not found, the message Find not successful appears on the screen. SET
TALK OFF suppresses this message. The record pointer moves to the end of the file,
FOUND() returns false, and EOF() is true.

If another file is related with SET RELATION and the FIND is not successful, the
record pointer in the related file will always be at the end of the file, whether NEAR is
set ON or OFF.

The FOUND() function will only return a true for actual finds, regardless of the status
of SET NEAR. The EOF() function will return a true if SET NEAR is OFF and there
is no match. If SET NEAR is ON, EOF() will only return a true when the key that is
sought is greater than all the keys in the index.

Programming Notes

Because the SEEK command accepts expressions, it is normally used in program files
where expressions are built by other commands or functions and passed to it. FIND is
normally used for ad hoc queries from the dot prompt, although you can also use
FIND in program files.

Special Cases

FIND ignores leading blanks when searching for a literal string. The following two
commands are identical:

. FIND A
. FIND A

Chapter 2, Commands 151

If you are searching for a string that contains leading blanks, include the character
string in either single quote mark, double quote mark, or square bracket delimiters.
You must also include the exact number of leading blanks in the string:

. FIND " A"

If a memory variable contains leading blanks, you must enclose the macro substitution
function and variable in quotation marks:

. FIND "&memvar"

If you are searching for a string that begins with a dBASE delimiter in the text, include
the entire string within another delimiter:

. FIND ["Yamada"]

Examples

These examples use the Client database file, indexed on the expression
Lastname+Firstname. To find the first record with a Lastname beginning with the
uppercase letter M:

. USE Client INDEX Cus_name
Master index: CUS_NAME

. FIND M

. 7 Lastname

Martinez

. SET EXACT ON

. FIND M

Find not successful

. SET EXACT OFF

To search for a record for Paterson (there is no such record):

. FIND Paterson
Find not successful
. 2 EOF()

T,

. SET NEAR ON

. FIND Paterson
Find not successful
. 7 EOF()

.F.

. 2 FOUND()

F.

. 7 Lastname
Peters

Language Reference

FIND
FUNCTION

See Also

EOF(), FOUND(), INDEX, KEY(), LOCATE, LOOKUP(), MDX(), NDX(), SEEK,
SEEK(), SET DELETED, SET FILTER, SET INDEX, SET NEAR, SET ORDER,
SET RELATION, TAG(), USE

FUNCTION

The FUNCTION command defines a user-defined function (UDF).

Syntax

FUNCTION <UDF name>
[PARAMETERS]

[.<other dBASE commands>]
RETURN <expression>

Usage

A user-defined function is a special type of procedure that can be used in a dBASE
expression and returns a value. Its definition consists of the FUNCTION command
followed by the name of the procedure you associate with this definition. A UDF name
can be up to ten characters long, must begin with a letter, and cannot contain spaces.

The UDF name may be followed by an optional parameter list, dBASE commands, or
program structures, and must end with a RETURN command which specifies the
value that the UDF returns. Depending on program complexity, you may nest up to a
maximum of 32 other UDFs within the calling UDF. In practice, this is almost always
a smaller number.

The optional PARAMETERS command assigns names to input parameters used as
arguments by the UDF. These parameter names are local to the UDF. The parameters
must be passed to the UDF in the same order in which they appear in the parameters
list.

The RETURN command returns the <expression> specified in the function definition.

When dBASE IV encounters a UDF name in a command line, it searches for and
executes the UDF and returns a single value. When a UDF terminates, program
control returns to the calling command.

WARNING Do not use the name of an existing dBASE function for a UDF.
dBASE IV will execute its own function and ignore any UDF that has the same
name.

Chapter 2, Commands 153

FUNCTION

Interrupt Handling

A dBASE IV command is interrupted when its execution is temporarily halted in order
to execute another dBASE IV command, a UDF, or a program. Most dBASE programs
can be interrupted by a user-defined function, or an ON command at multiple program
levels.

The interrupting UDF is not allowed to close or change the structure of the active
database file or clear or release the active window (if any). For example, while in
BROWSE, if you call a UDF that tries to USE a different database in the same work
area as the BROWSE, you will receive an error message. This is because dBASE IV
preserves the work area and any active window so that you can return to them.

dBASE IV permits certain changes without restrictions and propagates these changes
up to the interrupted command.

In order to preserve the original database file, when DBTRAP is set to ON, any
commands that would close or change the structure of the original database file are
blocked.

The commands that are blocked include USE, CLOSE DATA, CONVERT, PACK,
MODIFY STRUCTURE, and ZAP.

In order to preserve the original window, users are not allowed to remove it from
memory. Commands that are blocked include RELEASE WINDOWS, CLEAR
WINDOW, DEFINE WINDOW <same window name>, and RESTORE WINDOW
<same window name>.

You may MOVE a window or change its attributes by issuing the SET COLOR
command inside the window.

When the interrupt is over, the window that was active is restored. If you have moved
or changed attributes of the window inside the interrupting UDF, when you return, the
window will be in the new location and display the new attributes.

Interruptions may occur for many reasons. Listed below, for example, are many ways
that a BROWSE command can be interrupted with a UDF:
LOCK <expN>

WIDTH <expN>

SET FIELDS <calculated field name> = <exp>

SET RELATION TO <exp>

SET FILTER TO <expL>

@...RANGE <low exp>, <high exp>

..VALID <expL>

..WHEN <expL>

..DEFAULT <exp>

..MESSAGE <expC>

| |

154 Language Reference

FUNCTION

The WIDTH expression is evaluated immediately. The @...RANGE and VALID
expressions are evaluated only if you make a change to the field or if you include the
REQUIRED keyword in the command syntax.

WARNING Do not change the operating conditions of the interrupted

¢ command within a UDF. These include the relation chain, the field list, and the
filter and scope conditions of the database in use at the time of the interrupt. If
you change these, the results will be unpredictable when you return from

the UDF.

Restoring the Record Pointer

The record pointer tells dBASE IV which record is active. If executing an interrupt
routine that moves the record pointer, dBASE doesn’t restore the original record
pointer even if you set DBTRAP on. In every work area, whichever record is active at
the end of an interrupt remains the active record.

To ensure that an interrupted process (such as BROWSE or APPEND) resumes
smoothly after an interruption, your interrupt functions or procedures should include
steps to restore all record pointers to their original values. You can use the RECNO()
function to determine the value of the record pointer, save that value, then reset it with
the GOTO command after the interruption, as shown in the following example:

FUNCTION myudf

oldrecno = RECNO()

[the rest of your interrupt routine]
GOTO oldrecno

RETURN

Replacing APPEND Values

If you interrupt an APPEND with a routine that moves the record pointer, you should
take care to restore the record pointer to its original value. For more information, read
the guidelines described in the previous section, “Restoring Record Pointers.”

In addition, you should save all values entered prior to your interrupt routine and
restore those values after repositioning the record pointer. These steps are required
because dBASE IV keeps all values entered during the APPEND command in a
temporary buffer. During APPEND, the buffer record values are handled as follows:

s If you press Esc and abandon the new record, dBASE discards the values.

m If you accept the new record during a normal APPEND, the values are added to the
database file as a permanent record.

m If you move the record pointer during an APPEND interrupt, dBASE discards the
values in the temporary buffer.

Chapter 2, Commands 155

FUNCTION

156

To ensure that an APPEND operation resumes smoothly after an interruption, use the
following guidelines when writing your function:

Save the current record pointer

Save any values already entered.

Execute the interrupt routine.

Restore the original record pointer.

ok wy =

Restore the previously-entered record values.

Non-Recursive Commands

A group of closely-related commands cannot call each other in the same work area.
This is true regardless of the setting of DBTRAP. These commands are:

BROWSE, EDIT, CHANGE, INSERT, and APPEND

Two other closely related commands cannot call each other even in separate work
areas regardless of the setting of DBTRAP. These commands are:

LIST and DISPLAY

In addition, Control Center design screens, ASSIST, and CREATE/MODIFY cannot
be called recursively.

indexing with UDFs

When DBTRAP is ON, the indexing process is protected from all interrupts. To create
an index that uses a UDF in the key expression, you must set DBTRAP to OFF and
use either syntax:

INDEX ON <UDF name>...[FOR <UDF name>]

Indexing with a UDF in the key expression can create an invalid index. The indexing
procedure does not give any error messages if the UDF does not provide an indexable
value.

If the indexing procedure executes correctly, but the UDF is not found by the index at
a later date, dBASE IV will put a default value into the index and thus create an
invalid index. You must be aware of both potential problems with a UDF-containing
index key.

SQL Exceptions

A UDF definition can be placed in a .prs file, and a SQL program may call a UDF
with a dBASE command that is used by the .prs file.

SQL language syntax places some limits on UDF usage:

= You cannot use UDFs in a SQL statement
= You cannot use SQL statements in a UDF

Language Reference

FUNCTION
GO/GOTO

m You cannot use dBASE commands that are prohibited in SQL mode in a UDF that
is in a .prs file.

& Macro Substitution
& macro substitution is allowed in UDFs.

Examples

The following UDF, Plus_tax, returns the final cost of an item by adding the tax to the
price. This UDF requires that the item price and tax be passed to it as parameters.

FUNCTION Plus_tax

PARAMETERS M_price, M_tax

M_cost = (M_price * M_tax) + M_price
RETURN (M_cost)

*EQF Plus_tax.prg

To use the Plus_tax UDF from the dot prompt, type the following:

. SET TALK OFF

. SET PROCEDURE TO Plus_tax

. M_tax = .10

. ? Plus_tax(100, M_tax)
110

See Also

DO, PARAMETERS, PROCEDURE, RETURN, SET DBTRAP, SET LIBRARY, SET
PROCEDURE

Chapter 1 of this manual and Chapter 15 of Programming in dBASE IV, which
contains information on the SYSPROC setting.

GO/GOTO

GO/GOTO positions the record pointer to a specified record in the active database file.

Syntax

GO/GOTO BOTTOM/TORP [IN <alias>]

or

GO/GOTO [RECORD)] <record number> [IN <alias>]
or

<record number> [IN <alias>]

Chapter 2, Commands 157

GO/GOTO

Usage

If an index is not in use, TOP and BOTTOM refer to the first and last records in the
database file. If an index file is in use with the database, TOP and BOTTOM refer to
the first and last records in the index file. GO <record number> refers to the specified
record number, and not to a position in the index file. You may also position the record
pointer to a specific record by issuing the numeric expression without the GO/GOTO
verb.

With SET DELETED ON, you may GOTO a record that is marked for deletion by
directly specifying its record number. GOTO can also move the record pointer to
records that are restricted by SET FILTER, although you can’t access such records
with EDIT.

If a relation is set up among several files, moving the record pointer in the parent file
with GOTO will reposition the record pointer in a child database file to a related
record. If there is no related record, the child file’s record pointer will be positioned at
the end of the file, and EOF() returns a true (.T.). Moving the record pointer in a child
file, however, does not reposition the record pointer in its parent file.

Options

You may reposition the record pointer in another work area with the IN clause. The IN
clause allows you to manipulate the database file in another work area without
SELECTing it as the current work area. The <alias> you use may be:

= A number from | through 40

m A letter from A through J

m An alias name, either default or supplied through the ALIAS option of the USE
command

= A numeric expression that yields a number from 1 through 40 (enclosed in
parentheses if it is a memory variable)

m A character expression that yields a letter A through J or an alias name

See the Filenames section in Chapter 1 for more information on the use of filenames
and aliases.

Programming Notes

In a multi-user environment, the message Relation record in use by another appears
if the related record is locked and you attempt to modify its data. You may trap error
number 142 in an ON ERROR routine, and attempt another record lock.

Examples
The following examples use the Client database file.

To position the record pointer to record five of the Client database file:

158 Language Reference

G0/GOTO
HELP

. USE Client
.5
CLIENT: Record No 5

Use a memory variable to retain the record number:

. M_recno = RECNO()

5.00

. GO ToP

CLIENT: Record No 1

. GO M_recno

CLIENT: Record No 5
See Also
ON ERROR, RECNO(), SELECT, SET DELETED, SET FILTER, SET RELATION,
SKIP

HELP

HELP is a menu-driven command that provides information about dBASE IV.

Syntax
HELP [<dBASE IV keyword>]

Usage

The HELP command uses the Dbasel.hlp and Dbase2.hlp files supplied with
dBASEIV.

The keyword must be a dBASE IV command, function, or HELP screen name. You
can press F1 Help, instead of typing HELP, to get the Help Table of Contents. This
displays the main Help contents. Use arrow keys to move through the menu. Press
to choose the highlighted option.

You can also choose to go back to reread earlier screens, print a screen of information,
view related topics, or view just the syntax of a command and an example.

To exit Help, press the Esc key. The Help text remains on screen so you can use its
information while working on the command line. The Help text disappears when you
press ..

Chapter 2, Commands 159

HELP
IF/ENDIF

Example
You can get HELP on the RUN command with:

. HELP RUN

See Also
SET HELP

IF/ENDIF

IF is a structured programming command that enables conditional processing of
commands. The IF structure must terminate with ENDIF.

Syntax

IF <condition>
<commands>
[ELSE
<commands>]
ENDIF

Usage
IF is a valid command only in programs and cannot be used at the dot prompt.

Any structured commands within an IF...ENDIF structure must be properly nested.
Nested IFs are permissible.

IF <condition> sets up a condition, or logical expression such as A = B or Numvar <
11, for evaluation. If the condition evaluates to a logical true (.T.), all subsequent
commands are carried out until an ELSE (or the ENDIF if no ELSE exists) is reached.
dBASE IV then executes the first command after ENDIF.

If the condition evaluates to a logical false (.F.), dBASE IV goes directly to the ELSE
or ENDIF, whichever it encounters first. Commands between the ELSE statement and
ENDIF are executed if the condition is a logical false.

If there are multiple IFs in a command structure, ELSE refers to the IF immediately
preceding it in the nested structure.

The space following ENDIF on the command line may be used for comments. The
comment indicator, &&, isn’t needed, but you will see a compile-time warning if it is
left out.

160 Language Reference

IF/ENDIF
IMPORT

Example

Compare this example with the example given for the DO CASE command. The
following nested IF construct determines the magnitude of a memory variable and
displays an appropriate message:

IF M_value > 100
? "Value is over 100."

ELSE
IF M_value > 10
? "Value is over 10."
ELSE
IF M_value > 1
? "Value is over 1."
ELSE
? "Value is 1 or less."
ENDIF
ENDIF
ENDIF
See Also

DO CASE, DO WHILE, IIF(), SCAN

IMPORT

IMPORT creates dBASE 1V files from PFS:FILE forms, dBASE II database files,
Framework II, Framework III, and Framework IV database and spreadsheet frames,
RapidFile data files, and Lotus 1-2-3 spreadsheets.

Syntax

IMPORT FROM <filename> [TYPE] PES/DBASEI/FW2/FW3/FW4/
RPD/WK1/WKS

Defaults

The filename must include the file extension, if one exists and is different than the
default extension: dBASE II database files have a .dbf extension; Framework II,
Framework III, and Framework IV files an .fw2, .fw3, or .fw4 extension, respectively;
RapidFile data files an .rpd extension; and Lotus 1-2-3 files have a .wks or .wk1
extension. PFS:FILE forms do not usually have an extension. The newly created
dBASE 1V files are given the same name as the original file, but with a .dbf extension.
If you import a dBASE 1I file, change the file extension to .db2 before importing the
file.

If a catalog is open, the new file is added to the catalog. Records created in the new
database file are limited to a maximum of 4,000 bytes.

Chapter 2, Commands 161

IMPORT
INDEX

IMPORT creates the output file in the same drive and directory as the original file and
puts it into USE. Then it writes the imported data to the new output file. To display
information about the imported file, use DISPLAY STATUS and DISPLAY
STRUCTURE.

Usage

To make sure that you import PFS files correctly, check the following conditions
before using the IMPORT command:

m 255 data items per form. You can have up to 255 fields in a record. (Notice,
however, that headings and comments in your PFS:FILE form are also converted
to fields.)

m 254 characters per data item. 254 is the maximum length for character fields in
dBASE IV.

IMPORTing a PFS:FILE form creates a database (.dbf) file, a format (.fmit) file, a
compiled format (.fmo) file, and a view (.vue) file. All four have the same filename,
and are assigned their default file extensions.

See Also

APPEND FROM, COPY, DISPLAY STATUS, DISPLAY STRUCTURE, EXPORT,
SET FORMAT, USE

INDEX

INDEX creates an index in which records from a database file are ordered
alphabetically, chronologically, or numerically.

Syntax

INDEX ON <key expression> TO <.ndx filename> [UNIQUE]
or

INDEX ON <key expression>
TAG <tag name> [OF <.mdx filename>]
[FOR <condition>] [UNIQUE] [DESCENDING]

Defaults

Unless you specify otherwise as part of the filename, the default drive and current
directory are assumed. If you give a filename without an extension, the default .ndx or
.mdx extension is written.

If you type only INDEX I (that is, without any other keywords or options),
dBASE IV prompts for the index expression, which corresponds to the ON clause, and
the destination, which corresponds to the TO clause.

162 Language Reference

When SET SAFETY is ON (the default), dBASE IV displaysa warning prompt before
overwriting an index (.ndx) file or a tag with the same name.

If you use TAG, but do not provide an .mdx filename with the OF clause, dBASE IV
creates the tag in the production .mdx file. If you do not use TAG, an .ndx file is
created.

Without a FOR clause or the UNIQUE option, the index will contain all records. The
FOR clause can be used only with .mdx tags. UNIQUE can be used with .ndx files and
.mdx tags.

INDEXing occurs in ascending order, unless you use the DESCENDING option. You
may use DESCENDING only when building .mdx tags.

Indexed database files allow you to move the record pointer directly to the first record
whose data matches an expression given with the FIND or SEEK commands, or with
the LOOKUP() or SEEK() functions. The controlling index controls the movement of
the record pointer in the database file.

The index, which is written to disk as either an index file or as a tag in a multiple
index file, contains the key values and the corresponding record number for each
record in the database file. The physical order of the records in the original database
file is not changed by the INDEX command.

A multiple index file may contain up to 47 tags, each of which can impose an index
order on the database file. Tag names follow the same rules as variable names: they
may be up to 10 characters long, must begin with a letter, and may contain letters,
numbers, and underscores. Index filenames (both .ndx and .mdx) follow the rules for
all dBASE filenames; they can be up to eight characters long, and can only contain
characters allowed by the operating system.

A production multiple index file is an .mdx file opened whenever the database file is
USEd. Each database file may have one production .mdx file. The production multiple
index file has the same name as the database file, but has an .mdx rather than a .dbf
file extension. The database file header contains a flag that indicates the presence of a
production .mdx file.

To create an .ndx file, specify TO <filename>. To create a tag in the production .mdx
file, specify TAG <tag name>. To write the index to an .mdx file that is not the
production .mdkx file, specify TAG <tag name> OF <.mdx filename>.

Once you create an index, it becomes the new controlling index, and records appear in
the new index order. To change the controlling index, use the SET INDEX or SET
ORDER command. Additional active indexes have no effect on record pointer
movement, and are open only so they can be updated when data in their keys is
changed in the database file. Whenever changes are made that affect the key, the
associated index file must be open to log the changes; the alternative is to open and
REINDEX the index file.

When you create an ascending index, the key expression may be a single field or any
valid dBASE expression. The maximum length of the key expression is 220

Chapter 2, Commands 163

164

characters. The maximum length of the key, the result of the evaluated index key
expression, is 100 characters.

The data type of the key expression determines whether records will be ordered
chronologically (date expressions), numerically (numeric expressions), or in ASCII
order (character expressions). When the key expression includes several fields, they
must all be converted to the same data type. You can use dBASE functions to convert
fields to a matching type. Some of the functions most commonly used in creating
index key expressions are STR(), SUBSTR(), CTOD(), DTOC(), DTOS(), YEARY),
MONTH(), DAY(), and VALY).

Options

Using FOR <condition> indexes only the records that meet a specified condition. FOR
can be used only with .mdx tags, not with .ndx files. If no records meet the FOR
condition, an empty tag will still be created and maintained.

The FOR condition cannot include calculated fields. The maximum length of the
condition is 220 characters (including embedded spaces).

Using the UNIQUE option is the same as issuing SET UNIQUE ON before an
INDEX. When several records have the same value on the key field, only the first
record encountered with that value is included in the index. Whenever you REINDEX
an index file that was created with UNIQUE, the file retains its UNIQUE status,
regardless of whether SET UNIQUE is ON or OFF.

dBASE IV processes UNIQUE indexes only once. Therefore, a previously hidden key
value is not automatically updated when it is changed. REINDEX explicitly updates
all key values in a UNIQUE index.

DESCENDING builds an .mdx tag in descending numeric order. The DESCENDING
option can only refer to the entire index expression, not to one element in the
expression, such as a field. You may not build an .ndx file with the DESCENDING
option.

. TIP You can specify index expressions that convert field types. For example, if
you wanted to INDEX a date field chronologically and have the last names in
alphabetical order for each date, you could create the following expression:

INDEX ON DTOS(<date>) + Last_name TO <index filename>

The key expression must evaluate to a fixed-length key. You can create an index
with a variable length key, but the index may not be reliable. When creating an

index, always be sure to give a specific fixed length with functions that accept a
length parameter, such as STR() and SUBSTR().

Operations that move sequentially through the database file are usually slower if
an index is open. Use the SET ORDER command if you are not using the index
to position the record pointer, but still want to update the index keys. SET
ORDER speeds up data access if an .ndx file is open.

LIST/DISPLAY STATUS will show the FOR <condition> for indexes (if a
condition has been specified) after the line showing the <key expression>.

Language Reference

Special Cases

If you use TAG, but do not provide an .mdx filename with the OF clause, dBASE IV
checks the database file header for the existence of a production .mdx file. If a
production .mdx file exists, dBASE IV creates the tag in that file. If it does not find a
production .mdx file, it creates one. While attempting to create the new .mdx file, it
may find another .mdx file with the same name. In this case, it updates the database
file header to show the presence of this production .mdx file without creating a new
file.

If you use the OF clause, and the .mdx file is not open, it will be opened before the
index is created. If the .mdx file cannot be found, a new .mdx file is created with the
filename stated in the OF clause.

INDEX ignores filters set with SET FILTER or SET DELETED. All records of the
database file are included in the index unless you include FOR <condition> or use the
UNIQUE option to suppress duplicate keys.

If you create a conditional index with INDEX ON <key expression> FOR
DELETED(), RECALL ALL will only recall one record even if there are many
deleted records. The best way to perform RECALL ALL is to close the master
controlling index.

You can create an index on memory variables and fields from other open database
files. Indexes that reference data not in the current database file, however, may not be
updated when that data is changed. Opening an index that references a non-existent
memory variable causes an error.

If a catalog is open when an .ndx file is created, the index (.ndx) file is.added to the
catalog. The .mdx file and any index tags contained within an .mdx file are not,
however, added to the catalog.

In a multi-user environment, the database file must be in exclusive use before creating
an .mdx tag with the INDEX command. If the file is not USEd EXCLUSIVELy, the
error message Exclusive use of database is required appears.

You cannot use the INDEX command in an active transaction if:

» anon-production index file is currently open
m it overwrites an existing .ndx or .mdx file

m it overwrites an existing .mdx tag

Chapter 2, Commands 165

Examples
To index the Transact database file by Client_id:

. USE Transact
. INDEX ON Client_id TO Cus_id

100%
. LIST

Record#
9

1

12

10

2

7

To index a file so that it is ordered on client identifications and the amount of their

INVOICED

T

T

F.

F
T

indexed 12 Records indexed
CLIENT_ID ORDER_ID DATE_TRANS
A00005 87-113 03/24/87
A10025 87-105 02/03/87
A10025 87-116 04/10/87
B12000 87-114 03/30/87
€00001 87-106 02/10/87
LOObOZ 87-111 03/11/87

transactions:

FL

TOTAL_BILL
125.00
1850.00
1500.00
450.00
1200.00

1000.00

. INDEX ON Client_id + STR(Total_bill,10,2) T0 By_amnt
12 Records indexed

100%
. LIST

Record#
9

12

1

10

11

166

indexed

CLIENT_ID ORDER_ID DATE_TRANS
-113
-116
-105
-114
-115

A00005
A10025
A10025
812000
€00001

100002

87-

111

03/24/87
04/10/87
02/03/87
03/30/87
04/01/87

03/11/87

INVOICED TOTAL_BILL

e B s]

125.00
1500.00
1850.00

450.00

165.00

1000.00

Language Reference

If you want an alphabetical list of all Client_ids, use the UNIQUE option:

. INDEX ON Client_id TO Clients UNIQUE
100% indexed 7 Records indexed
. LIST Client_id

Recordft Client_id

9 A00005

1 A10025
812000
00001
00002
100001
£00002

1

~ oW o

To create a conditional index containing only records with a total bill of $1,000 or
more:

. INDEX ON Client_id TAG Large FOR Total_bill >= 1000
100% indexed 6 Records indexed
. LIST

Record# CLIENT_ID ORDER_ID DATE_TRANS [INVOICED TOTAL_BILL
1 A10025 87-105 02/03/87 T 1850.00

12 A10025 87-116 04/10/87 F 1500.00
2 (00001 87-106 02/10/87 T, 1200.00
4 C00001 87-108 02/23/87 T 1250.00
3 (00002 87-107 02/12/87 T, 1250.00
7 100002 87-111 03/11/87 FL 1000.00

To create an index TAG of Transact in reverse chronological order:

. INDEX ON Date_trans TAG Recent DESCENDING
100% indexed 12 Records indexed
. LIST

Record# CLIENT_ID ORDER_ID DATE_TRANS INVOICED TOTAL_BILL
12 A10025 87-116 04/10/87 F. 1500.00

11 €00001 87-115 04/01/87 Fu 165.00
10 B12000 87-114 03/30/87 Fu 450.00
9 A00005 87-113 03/24/87 T, 125.00
8 L00001 87-112 03/20/87 T 700.00
1 A10625 87-105 02/03/87 T 1850.00

Chapter 2, Commands

167

See Also

ALIAS(), CLOSE, COPY INDEX, COPY TAG, DELETE TAG, DESCENDING(),
FIND, FOR(), KEY(), LIST STATUS, LOOKUP(), MDX(), NDX(), TAGCOUNTY(),
ORDER(), REINDEX, SEEK, SEEK(), SET DELETED, SET EXCLUSIVE, SET
FILTER, SET INDEX, SET NEAR, SET ORDER, SET UNIQUE, SORT, STR(),
SUBSTR(), TAG(), TAGNO(), UNIQUE()

INPUT

168

INPUT is primarily used in dBASE programs to prompt a user to enter an expression
from the keyboard. Data entry is terminated by a ..

Syntax
INPUT [<prompt>] TO <memvar>

Usage

This command creates, if necessary, a memory variable that contains the expression
entered in response to the prompt.

The prompt must be a character expression. If the prompt is a literal rather than a
memory variable, it must be delimited by single quotes (' '), double quotes (" "), or
square brackets([]).

You may enter any valid dBASE expression in response to the INPUT command. The
type of expression entered determines the type of memory variable created.

You must enter a response followed by .J. If you press .J without first making an entry,
the prompt displays again.

Programming Notes

If the response must be character type data, use ACCEPT, WAIT, or @...GET.
ACCEPT assumes that all user response is character and doesn’t require delimiters.
Unlike the other commands, INPUT allows you to enter complex expressions.

If you use an INPUT command that requires a date response, include instructions in
the prompt to enter the date in curly braces, which are the date delimiters. If you enter
a character response, you should use the CTOD() function to convert the character
variable to a date variable.

If a memory variable of the same name already exists, it is overwritten, unless you
declare one variable PUBLIC and the other PRIVATE.

See Also
@, ACCEPT, PRIVATE, PUBLIC, READ, STORE, WAIT

Language Reference

INSERT

INSERT

INSERT adds a single new record to the database file at the current record location.

Syntax
INSERT [BEFORE] [BLANK]/[NOORGANIZE]

Usage

INSERT displays the new record for full-screen data entry. You may enter data into
this record only. The new record is inserted immediately after the current record. For
instance, if the current record is number 5, INSERT creates a new record 6; the old
record 6 becomes record 7, and so on. This command is not recommended for
extremely large files.

In two instances, INSERT works like APPEND and will add multiple records at the
end of the file one at a time: if the file is indexed, or if the record pointer is already at
the end of file.

Enter data into a memo field by placing the cursor on it (labeled memo on the screen)
and pressing Ctrl-Home. Leave the memo field by pressing Ctrl-End (to save) or Esc
(to exit without saving changes). While editing the memo field, use the same control
keys as MODIFY COMMAND. Press F1 Help to toggle on and off the menu
displaying the keys you can use.

Arrow keys move the cursor within a record. Esc abandons the process without
inserting a new record, displaying the message Record not inserted. Ctrl-End
terminates the process and completes the record insertion.

Options

The BEFORE clause inserts a new record just before the current record, rather than
after the current record. For instance, if the current record is number 5, INSERT
BEFORE creates a new record 5; the old record 5 becomes record 6, and so on.

If you include BLANK, a new record is INSERTed, but you do not enter full-screen
mode. An empty record is placed in the database file. You may add data later using the
BROWSE, CHANGE, EDIT, or REPLACE command. NOORGANIZE brings up a
menu bar without the Organize menu. The Organize menu options to sort, index, and
remove records are therefore unavailable.

TIP To copy the contents of the preceding record to the INSERTed record, use
{ SET CARRY ON before INSERTing records. SET CARRY TO also lets you copy
specific fields.

Chapter 2, Commands 169

INSERT
JOIN

Special Case

INSERT requires exclusive use of the database file in a multi-user environment.

Example

To insert a new record immediately before record 4 (that is, to create a new record 4)
in the Client database file, type the following:

. USE Client
. 604
CLIENT: Record No 4

. INSERT BEFORE

See Also

@, APPEND, BROWSE, CHANGE, EDIT, MODIFY COMMAND, READ,
REPLACE, SET CARRY, SET EXCLUSIVE, SET FORMAT

JOIN

JOIN creates a new database file by merging specified records and fields from two
open database files.

Syntax

JOIN WITH <alias> TO <filename> FOR <condition>
[FIELDS <field list>]

Defaults

The TO <filename> must include the drive and directory location if the file is not in
the current directory. A .dbf file extension is assumed unless you specify otherwise.

Usage

When JOINing an active file with an open file from an unselected work area, identify
the second file by its alias name. The alias name may be the same as the filename. If
both files have a field name in common and you want to include a field from the
unselected work area, precede the field name with the alias name.

The field list may consist of any type of field from both files except memo fields. If
you try to join memo fields, you will get the message Operation with memo field
invalid.

You may also use the SET FIELDS command before JOIN, rather than giving a field
list. Only the fields listed in SET FIELDS will be included in the new database file.

170 Language Reference

The record pointer is set to the first record in the active file. Then, each record in the
second file is evaluated to see if it matches the FOR <condition>. If the specified
condition is true (.T.), a new record is added to the new file. When all records in the
second file are scanned, the record pointer in the active file advances to the second,
and the process is repeated. This continues until all records in the active file are
processed. This operation can take a long time for large files.

If you do not specify a field list, field assignments are first made from the active file.
Then, fields are assigned from the second file until the 255-field limit is reached.
Duplicate field names appear only once in the new file.

JOIN updates a catalog, if it is open and SET CATALOG is ON.

TIP Do not use the single letters A through J, or the letter M, as database
filenames, because they are reserved for alias names. For example, AA is a valid
database filename whereas A is not.

Make sure you have adequate disk space allocated when JOINing two files. Two
database files can be JOINed such that the new file exceeds the available space.
The new JOINed file can become quite large if you do not carefully choose the
specified condition. For example, if two 1,000-record files were JOINed and the
specified condition were always true, 1,000,000 records would be created!

Examples

You can combine the Client database file with the Transact database file and form a
new database file, Newfile, to include client and order IDs, client name, order date,
and the amount of the order.

In the following JOIN command example, Newfile is the new database file created
with the fields Client_id, Client, Date_trans, Total_bill, and Order_id from the two
database files, Client.dbf and Transact.dbf. Because Date_trans, Total_bill, and
Order_id are found only in Transact, which is in the unselected work area, you have to
let dBASE IV know where to find these fields. You can identify fields in work area 1
by the alias A or Client, or work area 2 by the alias B or Transact.

Chapter 2, Commands

m

JOIN
KEYBOARD

. JOIN WITH Transact TO Newfile FOR Client_id=B->Client_id FIELDS Client_id, ;
Client, B->Date_trans, B->Total_bill, B->Order_id

12 records joined

. USE Newfile

. DISPLAY STRUCTURE

Structure for database: cdbase\samples-ewfile.dbf
Number of data records: 12
Date of last update : 11/23/87

Field Field Name Type Width Dec Index
1 CLIENT_ID Character 6 N
2 CLIENT Character 30 N
3 DATE_TRANS Date 8 N
4 TOTAL_BILL Numeric 8 2 N
5 ORDER_ID Character 6 N
** Total ** 59

. LIST NEXT 5 Client, Date_trans, Order_id

Record# Client Date_trans Total_bill Order id
1 BAILEY & BAILEY 03/09/87 415.00 87-109
2 BAILEY & BAILEY 03/20/87 700.00 87-112
3 L. G. BLUM & ASSOCIATES 02/10/87 1200.00 87-106
4 L. G. BLUM & ASSOCIATES 02/23/87 1250.00 87-108
5 L. G. BLUM & ASSOCIATES 04/01/87 165.00 87-115
See Also

SET FIELDS, SET RELATION

KEYBOARD

KEYBOARD enters a series of characters, mnemonic strings, or key labels into the
type-ahead buffer. dBASE IV then reads the characters as if the user typed them in.

Syntax
KEYBOARD <expC> [CLEAR]

Options

<expC> can be any character or character string, the CHR() function, or any key label
listed in Supported key labels table on next page.

CLEAR clears the keyboard buffer before inserting new characters. If the clear option
is omitted, the buffer is not cleared.

172 Language Reference

KEYBOARD

Usage

dBASE reads the characters in the keyboard buffer when you execute a command that
expects keyboard input, such as READ, BROWSE, or EDIT. KEYBOARD truncates
any characters that exceed the keyboard buffer as determined by the

SET TYPEAHEAD command. The keyboard buffer can be set to any value from

0 to 250. The default is 20.

Specify <expC> in any of the following ways:
Character string Use dBASE delimiters: ", ', or []
CHR() function Use no delimiters. 1 through 255 are supported. CHR(0) is

ignored.

Key Labels Use both delimiters and curly braces around the exact key label.
For example, "{ DNARROW}"

Numeric ASCHI Use both delimiters and curly braces around the numeric ASCII

value. Also use the Alt key and the numeric keypad to enter
special ASCII characters. For example, [{89}]

Supported key label names must be entered as shown in the following table. Key
labels are not case-sensitive.

NOTE You cannot use Enter or Esc with the KEYBOARD command. To send
an Enter key, use either Ctrl-M or {13}. To send an Esc key, use {27). You can
continue to use the CHR() function with these values.

Table 2-9 Supported Key Labels

Alt-0 through Alt-9 Ctri-PgDn Leftarrow

Alt-A through Alt-Z Ctri-PgUp PgDn

Backspace Ctrl-Rightarrow PgUp

Backtab Del Rightarrow

Ctrl-A through Ctrl-Z Dnarrow Shift-F1 through Shift-F9
Ctrl-End End Tab

Ctri-F1 through Ctrl-F10 F1 through F10 Uparrow

Ctrl-Home Home

Ctrl-Leftarrow Ins

See Also

CHR(), CLEAR TYPEAHEAD, INKEY(), READKEY(), SET TYPEAHEAD

Chapter 2, Commands 173

LABEL FORM

LABEL FORM

LABEL FORM uses a specified label format file designed with MODIFY LABEL to
print, display, or write labels to a file.

Syntax

LABEL FORM <label filename>/?
[<scope>] [FOR <condition>] [WHILE <condition>]
[SAMPLE] [TO PRINTER/TO FILE <filename>]

Defaults

Unless the file is in the current directory or a path is set, the filename must include the
path. Unless you specify otherwise, the dBASE IV label designer gives the label
design file an .Ibl extension, and the generated label an .Ibg extension.

Unless otherwise specified by the scope, the FOR or WHILE clause, or an active filter,
labels are printed for all records in the active database file.

Usage

The label template that you created with CREATE/MODIFY LABEL is contained in a
file with an .Ibl extension. The dBASE code that was generated is contained in a file
with an .Ibg extension. LABEL FORM finally compiles and runs an .Ibo file.

LABEL FORM first determines whether the label file is in dBASE ITI PLUS format or
dBASE IV format by checking a notation in the .1bl file.

If the file is in dBASE IV format, and an .1bo file does not exist, LABEL FORM will
compile an .Ibo file and run the labels.

If an .1bo file exists and SET DEVELOPMENT is ON, LABEL FORM compares the
date and time stamps of the .1bo and .lbg files. If the .Ibg was created after the .1bo file,
anew .Ibo file is compiled before the labels are run.

If an .1bo file exists and SET DEVELOPMENT is OFF, LABEL FORM will process
this .Ibo without checking the stamp of an .Ibg file.

If SET ECHO is ON, source code from the .Ibg file is printed instead of the labels.

Options

Use the SAMPLE option to print test labels to ensure proper alignment of the labels in
the printer. A single row of test labels is displayed using the character x rather than
data from the database file. You may repeat the process as many times as necessary by
responding Y when asked Do you want more samples? When you respond with N,
labels begin printing using data from the file.

174 Language Reference

LABEL FORM
LIST/DISPLAY

Use the TO FILE option to send the labels to a file, rather than to the printer or screen.
If you direct the output to a file with the TO FILE option, and you have installed the
ASCII text printer driver (Ascii.pr2), dBASE IV creates a file with a .txt extension.
The .txt file does not contain any embedded escape codes. If you have installed any
other driver, dBASE IV creates a file with a .prt extension. The .prt file may contain
embedded escape sequences specific to the installed printer.

The question mark, ?, is called the query clause. Use this to activate a menu of label
files to choose from.

Special Case

In a multi-user environment the LABEL FORM command places an automatic lock on
the database file before printing if SET LOCK is ON. If another user has used
RLOCK() or FLOCK() on the file, LABEL FORM generates the File is in use by
another error message. You may copy the file to a temporary file to generate the
report. LABEL FORM does not lock the file if SET LOCK is OFF.

See Also
CREATE/MODIFY LABEL, FLOCK(), RLOCK(), SET LOCK, SET PRINTER

Chapter 5, “System Memory Variables,” includes a discussion of variables, such as
_pdriver and _pform, which affect printed output.

Using dBASE IV discusses the label design screen in more detail.

LIST/DISPLAY

Use LIST/DISPLAY to view the contents of a database file in an unformatted
columnar list.

Syntax

LIST/DISPLAY [[FIELDS] <expression list>] [OFF]
[<scope>] [FOR <condition>] [WHILE <condition>]
[TO PRINTER/TO FILE <filename>]

Defaults

LIST shows all records, unless limited by the scope, a FOR or WHILE clause, SET
FILTER, SET KEY, or SET DELETED. DISPLAY shows only the current record,
unless given the scope or a FOR or WHILE clause.

Usage

LIST and DISPLAY ALL are nearly identical, except that DISPLAY pauses after each
screen’s display and LIST does not. After each screen, DISPLAY prompts Press any
key to continue...

Chapter 2, Commands 175

LIST/DISPLAY

To halt a LIST or DISPLAY, press Ctrl-S. Press any key to resume LISTing.
To abandon a LIST, press Esc (with SET ESCAPE ON).

The contents of memo fields are not displayed unless explicitly named in the FIELDS
list. Instead, the field name appears above the word memo (all lowercase) if there is
no text in the memo field, or MEMO (all uppercase) if there is text in the memo field.
If memo fields are named in the expression list, their contents are displayed in 50-
character wide columns. Use the SET MEMOWIDTH command to change this default
display width.

When you LIST or DISPLAY a record that is longer than 80 columns, the contents on
the screen wrap around to the next line and may break up a field onto two or more
lines.

Options

TO PRINTER directs command output to the printer, and TO FILE directs the output
to a file on disk.

The OFF option suppresses the record numbers.

Special Cases

If SET HEADING is ON, each column has a heading. If the displayed item is the
result of an expression involving a field (for example Cost/25), the column heading is
the same as the expression.

The heading appears just as you type it. For example, to have the heading in all capital
letters, type DISPLAY FIELD1. For mixed uppercase and lowercase headings, type
DISPLAY Fieldl.

Example

. USE Stock

. SET HEADING OFF

. LIST OFF STR(Qty,3,0) + SPACE(3) + STR(Item_cost,8,2) + " " + Part_name ;
FOR Item cost > 300

1200.00 SOFA, 6-FOOT
650.00 SOFA, 6-F0OT
1200.00 SOFA, 8-F00T
1250.00 CHAIR, DESK
1250.00 CHAIR, DESK
1000.00 CHAIR, DESK
350.00 CHAIR, SIDE
1500.00 DESK,EXECUTIVE 5-F00T
1000.00 CHAIR, DESK

[N Y S

See Also
SET ESCAPE, SET HEADING, SET MARGIN, SET MEMOWIDTH

176 Language Reference

LIST/DISPLAY FILES

LIST/DISPLAY FILES

LIST/DISPLAY FILES displays directory information.

Syntax

LIST/DISPLAY FILES [[LIKE] <skeleton>]
[TO PRINTER/TO FILE <filename>]

Defaults

If you do not specify a filename or skeleton, LIST/DISPLAY FILES provides
directory information on database files only.

Usage
For database files, this command displays the files, number of records, date of last

update, file size (in bytes), total number of files displayed, total number of bytes for
the displayed files, and the total number of bytes remaining on disk.

LIST/DISPLAY FILES is an alternate to DIR, but DIR does not accept the TO FILE
or TO PRINTER options. LIST/DISPLAY FILES also allows the output to be routed
to a disk file or to the printer.

Example
. LIST FILES
Database Files #f Records Last Update Size
CLIENT.DBF 8 11/05/87 1570
STOCK.DBF 17 11/05/87 1569
TRANSACT.DB F 12 11/05/87 554

3693 bytes in 3 files
8357056 bytes remaining on drive

See Also
DIR, FILE(), SET DEFAULT, SET DIRECTORY

Chapter 2, Commands 177

LIST/DISPLAY HISTORY
LIST/DISPLAY MEMORY

LIST/DISPLAY HISTORY

LIST/DISPLAY HISTORY outputs a list of commands that have been executed and
are stored in the history buffer.

Syntax

LIST/DISPLAY HISTORY [LAST <expN>]
[TO PRINTER/TO FILE <filename>]

Defaults

The default number of commands stored in the history buffer is 20. You can alter this
number with SET HISTORY.

Usage
DISPLAY pauses after each screen; LIST scrolls without pausing.

This command lets you view previously executed commands from the least recent to
the most recent.

Options

LIST/DISPLAY HISTORY displays all commands in the history buffer, unless you
limit the number by including the LAST option. In this case, it displays only the last
<expN> commands.

TO PRINTER directs command output to the printer, and TO FILE directs the output
to a file on disk.

See Also
SET HISTORY

LIST/DISPLAY MEMORY

LIST/DISPLAY MEMORY provides information on how dBASE IV is using
memory.

Syntax
LIST/DISPLAY MEMORY [TO PRINTER/TO FILE <filename>]

Usage

DISPLAY MEMORY pauses after every screen and displays the prompt Press any
key to continue.... LIST MEMORY does not pause after each screen.

178 Language Reference

LIST/DISPLAY MEMORY

This command shows the number and names of active memory variables and
elements; the public or private status of each; the values contained in each variable or
element; the names, definitions, and amount of memory used by all active windows,
Popups, menus, and pads; the settings for all system memory variables; and the
amount of memory still available.

The display for numeric variables contains both the number and the type (type F or
type N).

The number of memory variables you can have is the product of the MVBLKSIZE
and MVMAXBLKS settings, which are contained in the Config.db file. MVBLKSIZE
is the number of memory variable slots each block may contain, and MVMAXBLKS
is the maximum number of blocks in memory that may be allocated for memory
variables. If MVBLKSIZE = 50 and MVMAXBLKS = 10 (the default settings), you
can STORE up to 10 blocks of 50 variables each, or a total of 500 memory variables.

Memory variable blocks are allocated as they are needed. When one block is full, a
second block is allocated. Additional blocks are allocated until the maximum number
of blocks, which is set with MVMAXBLKS, is reached. Each memory variable slot
requires 56 bytes; when the first block is allocated, dBASE reserves enough space for
50 memory variables, which is 2,800 bytes of memory.

Each array that you DECLARE takes one memory variable slot only. A special block
is allocated for each array to hold the elements. Therefore, the number of array
elements do not take away from the number of slots initialized by MVBLKSIZE and
MVMAXBLKS.

If a memory variable is date, logical, or numeric, the data is contained within the
memory variable slot. If the memory variable is character, the memory variable slot
contains a pointer to another area in memory that contains the character string.

For every dBASE IV session, runtime symbols are created for each unique memory
variable name or field name used in a program or at the dot prompt. dBASE 1V creates
only one runtime symbol for each field or memory variable name, no matter how
many times it is referenced. The number of runtime symbols you can have is the
product of the RTBLKSIZE and RTMAXBLKS settings contained in the Config.db
file. RTBLKSIZE is the number of runtime symbol slots each block may contain, and
RTMAXBLKS is the maximum number of blocks in memory that may be allocated
for runtime symbols. The default setting for RTBLKSIZE is 50, and the default setting
for RTMAXBLKS is 10, allowing you to have a total of 500 runtime symbols.

As with memory variable blocks, runtime blocks are allocated as they are needed.
When one block is full, dBASE IV allocates a second block. Additional blocks are
allocated until the maximum number of blocks, which is set with RTMAXBLKS, is
reached. Each runtime symbol requires 17 bytes; when the first block is allocated,
dBASE IV reserves enough space for 50 symbols, which is 850 bytes of memory.

If you run a program that references many variables or field names, you may need to
allocate more memory for runtime symbols. If you have not provided for a sufficient
number of runtime symbol slots in the Config.db file, the message Exceeded
maximum number of runtime symbols appears during program execution, and you
should increase the RTBLKSIZE or RTMAXBLKS settings.

Chapter 2, Commands 179

LIST/DISPLAY MEMORY

A certain amount of memory overhead is used for displaying memory variables. Date
variables require 8 bytes, logical variables require 1 byte, and numeric variables
require 20 bytes. As the information for character variables is already stored in
memory, no additional overhead is required to display these variables.

The last line of LIST/DISPLAY MEMORY shows the total amount of memory
overhead used to hold the display for date, logical, and numeric variables, and for any
character data as stored in memory. 264 bytes are used for system memory variables;
50 at least 264 bytes will always show on the last line, even if you do not create any
other variables. For each variable that you create, the User MEMVAR/RTSYM
Memory Usage section displays the memory allocation totals.

You may also decrease the Config.db settings for MVBLKSIZE, MVMAXBLKS,

RTBLKSIZE, and RTMAXBLKS if you need additional memory for other operations,
such as creating windows or menus.

Options

TO PRINTER directs command output to the printer, and TO FILE directs the output
to a file on disk.

Examples

To illustrate, the character string "Hi there" has been stored to the memory variable
Mgreetings; the Binary Coded Decimal 400.34 has been stored to MFLOAT; a logical
true (.T.) has been stored to Mtruth; and the binary 3.21E+06 has been stored to the
memory variable MFIXED.

. DISPLAY MEMORY
User Memory Variables
MGREETINGS pub C "Hi there”

MFLOAT pub N 400.34 (400.3400000000000000)
MTRUTH pub L .T.
MFIXED pub F 3210000 (3210000.000000000000)

4 out of 500 memvars defined (and 0 array elements)

See Also

ACCEPT, AVERAGE, CALCULATE, COUNT, DECLARE, DEFINE MENU,
DEFINE PAD, DEFINE POPUP, DEFINE WINDOW, INPUT, PRIVATE, PUBLIC,
RELEASE, RESTORE, SAVE, STORE, SUM

Chapter 5, “System Memory Variables,” includes a discussion of the system variables
displayed by this command.

Getting Started with dBASE IV contains information on Config.db settings, including
MVBLKSIZE, MVMAXBLKS, RTBLKSIZE, and RTMAXBLKS.

180 Language Reference

LIST/DISPLAY STATUS

LIST/DISPLAY STATUS

LIST/DISPLAY STATUS provides information about the current dBASE IV session.

Syntax
LIST/DISPLAY STATUS [TO PRINTER/TO FILE <filename>]

Usage

DISPLAY STATUS pauses after each screen’s display and prompts you to Press any
key to continue.... LIST STATUS scrolls without pausing.

For each open database file, LIST/DISPLAY STATUS shows the following
information:

Current work area number

Database name with disk, path, and alias

Read-only status, if write-protected

Open index filenames (both .ndx and .mdx files), index key expressions for each
index file and tag, and whether the index is UNIQUE, DESCENDING, or has a
FOR condition

Open memo filenames
Filter formulas

Database relations

Format files

If any low-level files are open it shows:

The file handle number

The filename

The file’s open mode

The current position in bytes from the beginning of the file
The size of the file In addition, it shows:

File search path
OS working drive/directory

Print destination
Loaded modules

Currently selected work area

Left margin setting

Currently open PROCEDURE file
Reprocess count

Chapter 2, Commands 181

LIST/DISPLAY STATUS
LIST/DISPLAY STRUCTURE

Refresh count

The setting for DEVICE (SCREEN, PRINT, or FILE)
Currency symbol

Delimiter symbols

Number of files open

ON command settings

Current settings for most ON/OFF SET commands
Function key assignments

Currently open library file

Currently open system procedure (SYSPROC) file

Current key range

Options

TO PRINTER directs command output to the printer, and TO FILE directs the output
to a file on disk.

Special Case

In a multi-user environment LIST/DISPLAY STATUS indicates if an open database
file is locked. All locked records in each work area are listed.

See Also

ALIAS(), DIR, DISKSPACE(), FILE(), INDEX, KEY(), MDX(), MEMORY(),
NDX(), ORDER(), OS(), PROGRAM(), SET, TAG(), VERSION()

LIST/DISPLAY STRUCTURE

182

LIST/DISPLAY STRUCTURE displays the field definitions of the specified database
file.

Syntax

LIST/DISPLAY STRUCTURE [IN <alias>]
[TO PRINTER/TO FILE <filename>]

Usage

This command provides the following information: the filename, the number of
records, the last date that any database item was changed, the complete definition of
each of the fields, the fields that are index tags in the production .mdx file, and the
total number of bytes in a record.

Language Reference

LIST/DISPLAY STRUCTURE

The total number of bytes in a record is the sum of all the field widths plus one (the
extra byte stores the deleted record marker). The file header contributes to the total
number of bytes in a record.

If the number of fields in the database exceeds a screen (whether the active screen is a
small window or full display screen), then DISPLAY STRUCTURE pauses after each
screen and prompts you to Press any key to continue.... LIST STRUCTURE scrolls
without pausing.

If SET FIELDS is ON, the > symbol appears beside each field specified with the SET
FIELDS TO command.

Options

If you specify IN <alias>, the structure for the specified work area is displayed. The
IN clause allows you to view the structure in another work area without first having to
SELECT that work area.

TO PRINTER directs command output to the printer, and TO FILE directs the output
to a file on disk.

Example
To display the structure of the Client database:

. USE Client
. LIST STRUCTURE

Structure for database: C:\DBASE\CLIENT.DBF
Number of data records: 8
Date of Tast update : 11/05/87

Field Field Name Type Width Dec Index
1 CLIENT_ID Character 6 Y
2 CLIENT Character 30 Y
3 LASTNAME Character 15 N
4 FIRSTNAME Character 15 N
5 ADDRESS Character 30 N
6 CITY Character 20 N
7 STATE Character 2 N
8 ZIp Character 10 N
9 PHONE Character 13 N
10 CLIEN_HIST Memo 10 N

** Total ** 152

See Also

COPY STRUCTURE, COPY STRUCTURE EXTENDED, CREATE FROM,
CREATE/MODIFY STRUCTURE, SET FIELDS

Chapter 2, Commands 183

LIST/DISPLAY USERS
LOAD

LIST/DISPLAY USERS

LIST/DISPLAY USERS identifies the workstations currently logged in to dBASE IV
in a networking environment.

Syntax
LIST/DISPLAY USERS

Usage

This command reads the Login.db file and extracts the network-assigned names of the
workstations currently logged in.

The command looks for Login.db according to the path specified by
CONTROLPATH, and then in the directory where Dbase.exe resides.

Special Cases

Always use LIST/DISPLAY USERS, or its network operating system equivalent, to
determine whether anyone is using dBASE 1V before it is uninstalled.

If two or more users log in with the same workstation name, this command displays
the user name only once. For example, if two users log in as WKSTNI, LIST/
DISPLAY USERS shows:

Computer Name
>WKSTN1
even if they both logged in from the same directory.

See Also
LIST/DISPLAY STATUS, NETWORK()

LOAD

184

LOAD allows you to load binary program files in memory.

Syntax
LOAD <binary filename>

Usage

LOAD places a binary (.bin) file in memory where it can be executed with the CALL
command or the CALL() function.

Language Reference

Options

<binary filename> can be either a filename or a character expression that results in a
filename.

Programming Notes

dBASE 1V treats each loaded file as a subroutine or program module, not as an
external program file. A maximum of 16 files may reside in memory at one time. Each
can be up to 65,500 bytes and must be a binary file.

Each LOADed module must have a unique name. The default extension is .bin. When
you CALL a file, omit the extension; the filename itself becomes the module name. If
you LOAD a file that has the same filename but a different extension than one already
LOADed, the new one replaces the first one in memory.

To see the names of LOADed modules, issue the LIST/DISPLAY STATUS command.

dBASE IV does not check the integrity of the files you LOAD. Make sure that the
programs are in binary form and each program executes properly.

Binary files created for dBASE III PLUS can be used with dBASE 1V if they use a
single null-terminated character string parameter. Binary files that depend on the way
dBASE III PLUS arranges memory variables in memory will not work with

dBASE IV.

While designing the assembly language program from which the binary file is made,
you must conform to the following specifications:
m The first executable instruction must originate (ORG) at an offset of zero.

m The program must not allocate or use memory over and above its actual size,
because LOAD uses the file size to determine how much memory to allocate.

» The program must not lengthen or shorten memory variables passed as arguments
with CALL or CALL().

m Before returning control to dBASE 1V, the program must restore both the Code
Segment (CS) and the Stack Segment (SS) Registers.

m The program must return control to dBASE IV using a far return (RETF). Most
commercial programs end with an exit call rather than a far return; execute these
with the RUN/! command, not with LOAD and CALL.

You can pass up to seven parameters to the binary file with the CALL command or the
CALL() function. The parameters may be field names, expressions, memory variables,
or array elements of any data type except memo.

Before dBASE IV passes control to the binary program, it evaluates each parameter
and converts the result to a null-terminated character string.

Chapter 2, Commands 185

The CX register contains the number of parameters passed. DS:BX contains the
address of the first parameter. ES:DI points to a 28-byte block of memory that is a list
of seven four-byte addresses. The first four bytes point to the first parameter, the next
four bytes point to the second parameter, and so on. If fewer than seven parameters are
passed, the remaining addresses point to null-terminated empty strings.

The binary program can alter the contents of any of the parameters. However, only
changes made to parameters passed as memory variables are retained when the
program returns. dBASE IV converts the character string representation of each
memory variable back to the original data type, retaining the orginal data length.

To prepare an assembly language program written in 8086/8088 assembler for
LOADing by dBASE 1V, use an assembler program to assemble the source file (.asm)
into an object file (.obj), link the object file into an executable file (.exe), and then
create a binary file from the executable file. Following are the commands you would
use with the Borland Turbo Assembler (TASM).

TASM <source>;
TLINK <target>;
EXE2BIN <target>

Examples

Following is an assembly program that substitutes all occurrences of a specified
character with another specified character. This program is also included with the
sample files, along with the binary file Strsubst.bin.

186 Language Reference

; Strsubst.asm (Source for Strsubst.bin)
; Substitute characters in a character string.

CODE SEGMENT BYTE PUBLIC ‘CODE*

STRSUB PROC FAR

ASSUME CS:CODE
PARAMI EQU ES:[DI+0)]
PARAMZ EQU ES:[DI+4]
PARAM3 EQU ES:[DI+8]
PARAM4 EQU ES:[DI+12]
PARAM5 EQU ES:[DI+16]
PARAM6 EQU ES:[DI+20]
PARAM7 EQU ES:[DI+24]

START:
PUSH BP ; Save stack frame
MOV BP, SP
; Quit if there aren‘t at least 3 parameters.
CMP CX, 3
JL DONE
; Load first byte of 2nd parameter in CL
LDS BX, PARAM2 ; DS:BX points to 2nd parameter
MOV CL, [BX] ; Store 1st byte
; Load first byte of 3nd parameter in CH
LDS BX, PARAM3 ; DS: BX points to 3rd parameter
MOV CH, [BX] ; Store Ist byte in CH

; Point DS:BX to lst parameter
LDS BX, PARAML
; Loop for each character in lst parameter

AGAIN: MOV AL, [BX] ; Get next character in AL
CMP AL, O ; Is it end of string?
JE DONE ; Yes: exit
CMP AL, CL ; Is it character we‘re searching for?
JNE NEXT ; No: don‘t replace
MOV [BX], CH ; Yes: replace

NEXT: INC BX ; Point to next

JMP AGAIN

; DONE: POP BP ; Restore stack frame

RET

STRSUB ENDP

CODE ENDS
END

Chapter 2, Commands 187

LOAD
LOCATE

This example executes the binary file Strsubst.bin.

. LOAD Strsubst

Mstrl = vx % ox ok x x0
CALL Strsubst WITH Mstrl, "*", "#"
.7 Mstrl
N
See Also

CALL, CALL(), LIST/DISPLAY STATUS, RELEASE, RUN, RUN()

LOCATE

188

LOCATE searches the active database file for a record that matches a specified
condition.

Syntax
LOCATE [FOR <condition>] [<scope>] [WHILE <condition>]

Usage

LOCATE performs a sequential search of a database file and tests each record for a
match to the FOR condition. The condition will evaluate to true (.T.) or false (.F.) for
each record. If the condition evaluates to true, a match is found, and LOCATE
positions the record pointer on this first matching record.

LOCATE does not require an indexed database file. FIND and SEEK, which operate
on indexed files, are generally much faster. If an index is in use, however, LOCATE
will follow its index order. When an index is active, the SEEK command is more
efficient than the LOCATE command. The SEEK command can only be used if you
are searching for the index key. SEEK searches through the .ndx or the tag. Such index
files are usually much smaller than the database file.

Locate tests each record. To search on the basis of a field other than the key field,
close the indexes first. Because LOCATE doesn’t affect data, you can SET ORDER
TO ., LOCATE, and SET ORDER to <expN> without the need to reindex.

You must provide a logical condition in the FOR clause, such as LOCATE FOR
Lastname = "Goreman", or LOCATE FOR .T.

To find the next occurrence of the specified condition, use the CONTINUE command.
Even if you issue several LOCATE commands against the same database file,
CONTINUE always continues the search of the most recent LOCATE.

Language Reference

LOCATE

LOCATE and CONTINUE are specific to the work area in which they are issued. You
can have a different LOCATE in each work area. If you issue a LOCATE, then select
another work area, and later return to the first work area and issue a CONTINUE
command, the search will pick up where the previous LOCATE in that work area left
off.

Record Pointer

Unless otherwise restricted by the scope or a WHILE clause, LOCATE repositions the
record pointer to the beginning of the database file and starts the search with the first
record.

The NEXT <n> scope option limits the search to the specified number of records. The
NEXT <n> and REST scope options do not reposition the record pointer at the
beginning of the database file; the search starts at the current record.

If a match is found, the record pointer moves to that record. If SET TALK is ON,
dBASE IV shows the record number. FOUND() returns .T.

If no match is found, the record pointer moves to the end of the file (EOF() is .T.), or
the end of the scope if you specified one, and the message End of LOCATE scope
appears. FOUND() returns .F.

Examples

To locate the first record in the Transact database file that contains the Client_id
L00001:

. USE Transact
. LOCATE FOR Client_id = "L00001"
Record = 5

To locate each record that contains a Client_id of C00001 and has not been invoiced:

. LOCATE FOR Client_id = "C00001" .AND. .NOT. Invoiced

Record = 11

. DISPLAY

Recordft CLIENT_ID ORDER_ID DATE_TRANS INVOICED TOTAL BILL
11 C00001 87-115 04/01/87 .F. 165.00

. CONTINVE

End of LOCATE scope

. P EOF()

T,

. 7 FOUND()

F.

See Also
CONTINUE, FIND, FOUND(), SEEK, SEEK()

Chapter 2, Commands 189

LOGOUT
MODIFY COMMAND/FILE

LOGOUT

LOGOUT logs out the current user and sets up a new log-in screen.

Syntax
LOGOUT

Usage

LOGOUT logs out the current user and sets up a new log-in screen when used with
PROTECT. The LOGOUT command enables you to control user sign-in and sign-out
procedures. The command forces a logout and prompts for a login.

When the command is processed, the screen clears and a log-in screen appears. The
user can then enter a group name, log-in name, and password. The PROTECT
command establishes log-in verification functions and sets the user access level.

LOGOUT closes all open database files, their associated files, and program files.

Special Case

If PROTECT has not been used, no Dbsystem.db file is created, and LOGOUT returns
the user to the dot prompt instead of to the log-in screen.

See Also
PROTECT, QUIT

MODIFY COMMAND/FILE

190

MODIFY COMMANDY/FILE calls the dBASE IV full-screen text editor or a specified
word processor.

Syntax
MODIFY COMMAND/FILE <filename> [WINDOW <window name>]

Defaults

If you do not specify the directory or file extension as part of the filename for
MODIFY COMMAND, the default directory and the .prg extension are used.

MODIFY FILE, the alternative syntax for the dBASE IV text editor, does not provide
a default extension. If you do not specify an extension when you create a file with
MODIFY FILE, none is provided.

The default line length and right margin is 1,024 characters or column 1,024.

Language Reference

MODIFY COMMAND/FILE

Usage

By default, MODIFY COMMAND/FILE calls up the dBASE IV full-screen text
editor to create or edit program files, format files, or any standard ASCII text files.
You can call it from the dot prompt or the dBASE IV Control Center when you
attempt to edit a program or procedure file, or a memo field.

MODIFY COMMAND operates in the active window. You can also assign it to an
alternate window, using the WINDOW option. If a window is referenced which has
not yet been activated with the ACTIVATE WINDOW command or has been closed
with the CLEAR WINDOWS command, dBASE IV displays the error message
Window name not found.

MODIFY COMMANDY/FILE allows line lengths of up to 1,024 characters and 32,000
lines. Therefore, the maximum possible file size would be 32,000 times 1,024
characters or 32,768,000 bytes, although this is usually limited by available disk
space.

You can use an external word processor instead of the dBASE IV internal text editor
by setting TEDIT in the Config.db file. See Getting Started with dBASE 1V for
information about Config.db settings.

When you issue the MODIFY COMMAND/FILE command, dBASE 1V searches for
the specified file. If the file exists, it is called up for editing. If the file is not found, a
new file is created. Each time that you edit a file, a backup copy of the previous
version is saved in the same directory as the original file. The name of a backup file is
the same as that of the original file. Whether or not SET SAFETY is ON , any earlier
version of a backup file is automatically overwritten each time its original file is
changed.

After you edit a .prg file, the editor deletes the old .dbo file. You must compile the new
.prg file to create a new .dbo file.

The MODIFY COMMAND screen contains a bar menu of editing commands. A
complete list of the cursor movement keys is given in Quick Reference. More
information on the use of the Layout, Words, and Print menus can be found in Using
dBASE IV,

You can also get a printout of a file created by MODIFY COMMAND/FILE by
entering:

. TYPE <filename> TO PRINT

See Also
COMPILE, CREATE, DO, NOTE/*/&&, RENAME, SET DEVELOPMENT, TYPE

Chapter 2, Commands 191

MOVE WINDOW

MOVE WINDOW

The MOVE WINDOW command moves a window to a new location on the screen.

Syntax

MOVE WINDOW <window name> TO <row>,<column>/BY
<delta row>,<delta column>

Usage

The syntax shown combines two different ways of moving a window. You can give the
new coordinates for the window, or you can give the change you want in the
placement of the window, relative to its current position.

Once you move a window, the coordinates of the new location are associated with that
window name. If you want the window back at its original location, you must issue
another MOVE WINDOW command that contains the original row and column
parameters.

If the window does not fit on the screen at the new location, an error message appears
~ and the MOVE WINDOW command does not take effect.

Examples
To move a window called W1 to the right by 2 columns and down by 5 lines:

. MOVE WINDOW W1 BY 5,2
To move the window W1 to new coordinates:

. MOVE WINDOW W1 TO 10,5

See Also

ACTIVATE WINDOW, DEACTIVATE WINDOW, DEFINE WINDOW, RESTORE
WINDOW, SAVE WINDOW, SET WINDOW OF MEMO

192 Language Reference

NOTE

NOTE, an asterisk (*), or double ampersand (&&) characters indicate comment lines
in a program (.prg) file.

Syntax

NOTE/* <text>

and

[<command>] & &<text>

Usage

NOTE/*/&& inserts comments into program files for documentation and explanatory
purposes. You can use any of the three forms indicating a note anywhere in a program.
If a NOTE, *, or && line ends with a semicolon, dBASE 1V reads the next line as part
of the comment line.

Examples
This example shows how you might use NOTE:

NOTE This is a simple Toop
STORE 1 to Cnt
DO WHILE Cnt < 100

STORE Cnt + 1 TO Cnt
ENDDO

This example uses && to put a comment on a program line:

Memvar = 12 && initializes numeric memvar

See Also
MODIFY COMMAND/FILE, PROCEDURE

ON BAR

ON BAR executes a specified command when the user selects (highlights) a bar in a
pop-up menu.

Syntax
ON BAR <expN> OF <popup name> [<command>]

Chapter 2, Commands 193

NOTE <command> is any command except one that changes the flow of
control, such as IF, ELSE, DO WHILE, and so on.

Usage

Use ON BAR to execute a specified command when the user selects (highlights) a
particular bar in a pop-up menu. A user can select a bar in the following ways:

m Use the T and | keys to move the cursor to the bar.
m Press the first letter of the bar’s prompt.
s Click the bar.

m Drag the mouse cursor to the bar.

To execute a command when the user chooses (by pressing Enter or double-clicking
the mouse) a bar, use ON SELECTION BAR. To execute a command when the user
moves the cursor off a bar, use ON EXIT BAR.

To trigger the same command on all bars, use ON POPUP instead of ON BAR.

If you omit <command> when you use ON BAR, the command previously assigned
for the specified menu bar is disabled.

Example

In the following example, dBASE lists all of the database files in the current directory
when the user highlights bar 1, and lists all of the .QBE files in the current directory
when the user highlights bar 2.

DEFINE POPUP P1 FROM 1,1

DEFINE BAR 1 OF P1 PROMPT "Database Files"
DEFINE BAR 2 OF P1 PROMPT "Query Files"

ON BAR 1 OF P1 DO Showfiles WITH PROMPT()
ON BAR 2 OF P1 DO Showfiles WITH PROMPT()
ACTIVATE POPUP P1

RETURN

194 Language Reference

ON BAR
ON ERROR/ESCAPE/KEY

* Procedure
PROCEDURE Showfiles
PARAMETERS prompt
DEFINE WINDOW Showfiles FROM 5,0 T0 20,79
ACTIVATE WINDOW Showfiles
DO CASE

CASE prompt = "Database Files"

DIR

WAIT

CASE prompt = "Query Files"
DIR *.QBE
WAIT

ENDCASE

DEACTIVATE WINDOW Showfiles

RETURN

See Also

BAR(), BARCOUNT(), BARPROMPT(), DEFINE BAR, DEFINE MENU, DEFINE

PAD, DEFINE POPUP, MENU(), ON EXIT BAR, ON EXIT MENU, ON EXIT PAD,
ON EXIT POPUP, ON MENU, ON PAD, ON POPUP, ON SELECTION BAR,

ON SELECTION MENU, ON SELECTION PAD, ON SELECTION POPUP, PAD(),

POPUP(), PROMPT()

ON ERROR/ESCAPE/KEY

ON ERROR/ESCAPE/KEY suspends the current program and performs the specified
action if an error occurs, the Esc key is pressed, or the <key label name> key is
pressed.

Syntax

ON ERROR [<command>]
/ESCAPE [<command>]
/KEY [LABEL<key label name>] [<command>]

Usage

The ON command sets a trap that waits for the specified condition to occur. These
conditions are a dBASE 1V error, pressing the Esc key, or pressing either a key
designated in <key label name> or any key if no key label is designated. dBASE IV
errors include syntax errors and evaluation errors (among others). The ON condition
remains in effect until you explicitly remove it by entering ON ERROR/ESCAPE/
KEY with no command. Note that ON ESCAPE does not work when SET ESCAPE is
OFF. ON KEY does not work if SET TYPEAHEAD is 0.

Chapter 2, Commands 195

ON ERROR/ESCAPE/KEY

196

If ON ERROR is triggered, and you are executing the ON ERROR command or
procedure, the ON ERROR trap is disabled until the command or procedure completes
its execution. You may, however, set another ON ERROR trap inside the procedure.
Therefore, you can nest several ON ERROR traps, each of which is released when the
called command or procedure is finished.

The following full-screen commands trap and handle errors internally. Therefore, the
<command> associated with ON ERROR will not be triggered if an error occurs
inside of one of these commands:

APPEND

ASSIST

BROWSE

EDIT

CREATE/MODIFY APPLICATION/LABEL/REPORT/SCREEN/
STRUCTURE/VIEW

MODIFY COMMAND/FILE

Programming Notes
dBASE IV responds to the ON options in the following order of precedence:

ON ERROR = A dBASE IV error occurred

ON ESCAPE = The Esc key is pressed

ON KEY = The specified key is pressed (or, if no key label is given, any key is
pressed)

If, for example, ON KEY (without a key label) and ON ESCAPE are in effect at the
same time, pressing the Esc key executes the ON ESCAPE command. It does not
execute the ON KEY command line.

If you try to trap the Esc key with the ON KEY command, SET ESCAPE must be
OFF.

If the ON KEY command is in effect without a key label, and you press any key other
than Esc, ON KEY is executed after the current command is completed. For instance,
pressing a key while INDEXing a file will not interrupt the index procedure. Unless
the program removes the stored key, however, the command you specify on the ON
KEY command line will execute repeatedly.

ON ERROR does not respond to errors at the operating system level, such as a drive
or printer not being accessible. It responds only to dBASE IV errors, such as a syntax
error or an evaluation error.

If a dBASE IV error is not one of these two types, ON ERROR will not trap it.
dBASE error 39, “Numeric Overflow”, for example, is warning you of a mathematical
result, and that you should adjust your code. Also, returning from an ON ERROR
<command> will not re-evaluate an IF or DO WHILE condition in the program in
which the error occurred (unless RETRY is used). Use RETURN in an error procedure
to continue with the next line after the error. If the next line is a DO WHILE/IF loop,
RETURN continues in the loop.

Language Reference

ON ERROR/ESCAPE/KEY

The ON ERROR and ON ESCAPE commands can in turn execute any other
commands, provided they aren’t already being used as descendents of a user defined
function or the ON KEY, ON READERROR, or ON PAGE commands.

You should avoid using a dBASE command recursively with the ON KEY command.
See the FUNCTION command for the list of commands that should not be used
recursively. The same limitations on recursive commands apply to UDFs, ON KEY,
and ON ESCAPE.

The LABEL option of the ON KEY command makes it possible to trap specific keys,
rather than any key as in dBASE III PLUS. If you use a character memory variable for
the <key label name>, include the macro substitution symbol (&). Using ON KEY
LABEL without <key label name> sets the trap for any key on the keyboard. Using
ON KEY alone resets the key trap and turns it off.

When SET FUNCTION and ON KEY are both sensitive to the same key, ON KEY
takes precedence over SET FUNCTION. If ON KEY traps a key while you are typing
input for a GET variable, the command for the trapped key will be executed and
processing returns to the point prior to the command. Please note, however, that the
trapped character will not be placed in the GET variable.

While a WAIT command is active, it takes precedence over ON KEY. The memory
variable used by WAIT will receive its input regardless of any ON KEY traps.

ON KEY causes an immediate trigger in EDIT, BROWSE, READ, user-defined
menus and popups, and at the end of each command. You can trap both control and
non-control keys. Certain commands with specific tasks such as LIST, SORT, and
INDEX aren’t interrupted by an ON KEY press; any ON KEY commands are
executed after these commands are completed.

ON KEY isn’t case-sensitive regarding the <key label name> used in a command,
whether for printing or non-printing characters. You can use uppercase or lowercase
characters.

The <key label name> for printable keys are the characters, digits, or symbols you see.
Table 2-10 shows you the <key label name> descriptions to use for the non-printing
keys of your keyboard.

A READ takes precedence over ON ESCAPE. If a READ is active and you press the
Esc key, the next line of code after the the READ is executed. To trap the Esc key
(27) after a READ, use the LASTKEY() or READKEY () function.

Table 2-10 <key label name> descriptions for non-printing keys

Keycap Identification <key label name>
F1to F10 F1, F2, F3

Ctrl-F1 to Ctrl-F10 Ctrl-F1, Ctrl -F2
Shift-F1 to Shift-F9 Shift-F1, Shift-F2
Alt-0 to Alt-9 Alt-0, Alt-1, Alt-2

(continued)

Chapter 2, Commands 197

ON ERROR/ESCAPE/KEY

Table 2-10 <key label name> descriptions for non-printing keys (continued)

Alt-A to Alt-Z Alt-A, Alt-B, Alt-C
“— LEFTARROW descriptions for non-printing keys
- RIGHTARROW

T UPARROW

\ DNARROW
Home Home

End End

PgUp PgUp

PgDn PgDn

Del Del

Backspace BACKSPACE
Ctrl-« Ctrl-leftarrow
Ctrl-— Ctrl-rightarrow
Ctrl-Home Ctrl-Home
Ctrl-End Ctrl-End
Ctrl-PgUp Ctrl-PgUp
Ctrl-PgDn Ctrl-PgDn

Ins INS

Tab TAB

Back Tab BACKTAB

Ctrl-A to Ctrl-Z* Ctrl-A, Ctrl-B, Ctrl-C

* On most keyboards, ON KEY LABEL Ctrl-M can be used to trap the I key.

Examples

The examples below assume that a procedure file containing If_err and Stop is already
open.

To activate the ON ERROR option when a dBASE IV error occurs, type the
following:

. ON ERROR DO If_err

198 Language Reference

ON ERROR/ESCAPE/KEY
ON EXIT BAR

Then, if dBASE IV encounters an error, it branches to:

PROCEDURE If_err
* error processing commands

RETURN

To set up the ON KEY option to execute a DO <program> command that halts
printing and branches to a procedure named Stop, enter:

. ON KEY DO Stop

Afterward, if you press any key, the program branches to the Stop procedure. The
following procedure prompts you to press the letter A if you want to stop printing.
Pressing any other key causes printing to resume.

PROCEDURE Stop
* First clear the key that triggered ON KEY
* from the type-ahead buffer with INKEY().
i = INKEY()
WAIT "Press A to Abort printing, " +;
"any other key to continue" TO choice

IF UPPER(choice) = "A"

RETURN TO MASTER
ENDIF
RETURN

See Also

INKEY(), LASTKEY(), ON READERROR, PROCEDURE, READKEY(), RETRY,
RETURN, SET ESCAPE, SET LIBRARY, SET PROCEDURE, SET TYPEAHEAD,
UPPER(), WAIT

ON EXIT BAR

ON EXIT BAR executes a specified command when the user moves the cursor off the
bar in a pop-up menu.

Syntax
ON EXIT BAR <expN> OF <popup name> [<command>]

NOTE <command> is any command except one that changes the flow of
control, such as IF, ELSE, DO WHILE, and so on.

Chapter 2, Commands 199

ON EXIT BAR

Usage

Use ON EXIT BAR to execute a specified command when the user moves the cursor
off a particular bar in a pop-up menu.

A user can move the cursor off a bar in the following ways:

m Use the T and | keys to move the cursor to a different bar.
Press the first letter of another bar’s prompt.

Click or double-click another bar.

Drag the mouse cursor from the bar.

m Deactivate the pop-up menu.

To execute a command when the user selects (highlights) a bar, use ON BAR. To
execute a command when the user chooses a bar, use ON SELECTION BAR.

To trigger the same command on a// bars, use ON EXIT POPUP instead of ON EXIT
BAR.

If you omit <command> when you use ON EXIT BAR, any command previously
assigned for the specified bar is disabled.

Example

In the following example, dBASE IV lists all of the database files in the current
directory when the user moves the cursor away from bar 2, and lists all of the .QBE
files in the current directory when the user moves the cursor away from bar 3.

DEFINE POPUP P1 FROM 1,1

DEFINE BAR 1 OF P1 PROMPT "Files"

DEFINE BAR 2 OF P1 PROMPT "Database Files"
DEFINE BAR 3 OF P1 PROMPT "Query Files"

ON EXIT BAR 2 OF P1 DO Showfiles WITH PROMPT()
ON EXIT BAR 3 OF P1 DO Showfiles WITH PROMPT()

ACTIVATE POPUP P1
RETURN

200 Language Reference

ON EXIT BAR
ON EXIT MENU

* Procedures
PROCEDURE Showfiles
PARAMETERS prompt
DEFINE WINDOW Showfiles FROM 5,0 TO 20,79
ACTIVATE WINDOW Showfiles
DO CASE

CASE prompt = "Database Files"

DIR

WATT

CASE prompt = "Query Files"
DIR *.QBE
WAIT

ENDCASE

DEACTIVATE WINDOW Showfiles

RETURN

See Also

BAR(), DEFINE BAR, DEFINE MENU, DEFINE PAD, DEFINE POPUP, MENU(),
ON BAR, ON EXIT MENU, ON EXIT PAD, ON EXIT POPUP, ON MENU,

ON PAD, ON POPUP, ON SELECTION BAR, ON SELECTION MENU,

ON SELECTION PAD, ON SELECTION POPUP, PAD(), POPUP(), PROMPT()

ON EXIT MENU

ON EXIT MENU executes a specified command when the user moves the cursor off
certain pads in a specified menu.

Syntax
ON EXIT MENU <menu name> [<command>]

NOTE <command> is any command except one that changes the flow of
control, such as IF, ELSE, DO WHILE, and so on.

Usage

Use ON EXIT MENU to execute a specified command when the user moves the
cursor off certain pads in a specified menu. ON EXIT MENU associates the command
only with pads that do not have an ON EXIT PAD command assigned to them. ON
EXIT MENU, in effect, is the default command for every pad that does not have its
own ON EXIT PAD command.

If you omit <command> when you use ON EXIT MENU, any command previously
assigned for the specified menu is disabled.

Chapter 2, Commands 201

ON EXIT MENU

Example

In the following example, when the user selects a menu pad, a box with explanatory
information appears on the screen. The ON EXIT MENU commands runs a Cleanup
procedure. As the user moves from the original pad to a new pad, this procedure
removes the original pad’s explanation box from the screen.

SET TALK OFF

DEFINE MENU Main

* Define pads..

DEFINE PAD padl OF Main AT 0,0 PROMPT "Plains States"

DEFINE PAD pad2 OF Main AT 0,15 PROMPT "Heartland"

DEFINE PAD pad3 OF Main AT 0,27 PROMPT "District of Columbia"

DEFINE PAD pad4 OF Main AT 0,50 PROMPT "Border States"

* Define pad actions..

ON EXIT MENU Main DO Cleanup

ON PAD padl OF Main DO Explain WITH "Iowa", "Kansas", "Minnesota", "Missouri",;
"Nebraska”, "North Dakota", "South Dakota"

ON PAD pad2 OF Main DO Explain WITH "I11inois", "Indiana", "Michigan",;
"Ohio", "Wisconsin"

ACTIVATE MENU MAIN

* Procedures
PROCEDURE Explain
PARAMETERS statel, state?, state3, stated, state5, state6, state7
numstates = PCOUNT()
@ 10,1 T0 12+numstates, 45 DOUBLE
@ 11,3 SAY "This menu covers the following states:"
cntr =1
DO WHILE cntr <= numstates
z = "state"+LTRIM(STR(cntr))
@ 11l+cntr, 6 SAY &z
entr = cntr + 1
ENDDO
RETURN
*EQP Explain

PROCEDURE Cleanup

@ 10,1 CLEAR TO 19,45
RETURN

*EQP Cleanup

See Also

BAR(), DEFINE BAR, DEFINE MENU, DEFINE PAD, DEFINE POPUP, MENU(),
ON BAR, ON EXIT BAR, ON EXIT PAD, ON EXIT POPUP, ON MENU, ON PAD,
ON POPUP, ON SELECTION BAR, ON SELECTION MENU, ON SELECTION
PAD, ON SELECTION POPUP, PAD(), POPUP(), PROMPT()

202 Language Reference

ON EXIT PAD

ON EXIT PAD

ON EXIT PAD executes a specified command when the user moves the cursor off a
specified pad in a menu.

Syntax
ON EXIT PAD <pad name> OF <menu name> [<command>]

NOTE <command> is any command except one that changes the flow of
control, such as IF, ELSE, DO WHILE, and so on.

Usage

Use ON EXIT PAD to execute a specified command when the user moves the cursor
off a specified pad in a menu. The user can move the cursor off a pad in the following
ways:

Use the «- and — keys to move the cursor to another pad.

Click or double-click another pad.

Drag the mouse cursor to another pad.

Press the Alt key and the first letter of another pad’s prompt.

Press Esc.

To execute a command when the user selects (highlights) a pad, use ON PAD. To
execute a command when the user chooses a pad, use ON SELECTION PAD.

To trigger the same command on all pads, use ON EXIT MENU instead of
ON EXIT PAD.

If you omit <command> when you use ON EXIT PAD, any command previously
assigned for the specified pad is disabled.

Example

In the following example, when the user selects a menu pad, a box with explanatory
information appears on the screen. The ON EXIT PAD commands run a Cleanup
procedure. This procedure removes the previous pad’s explanation box from the screen
when the user leaves one pad to go to another.

Chapter 2, Commands 203

ON EXIT PAD
ON EXIT POPUP

DEFINE MENU Main

* Define pads..

DEFINE PAD padl OF Main AT 0,0 PROMPT "Plains States"

DEFINE PAD pad?2 OF Main AT 0,15 PROMPT "Heartland"

DEFINE PAD pad3 OF Main AT 0,27 PROMPT "District of Columbia"

DEFINE PAD pad4 OF Main AT 0,50 PROMPT "Border States"

* Define pad actions..

ON PAD padl OF Main DO Explain WITH "Iowa", "Kansas", "Minnesota", "Missouri",;
"Nebraska", "North Dakota", "South Dakota"

ON EXIT PAD padl OF Main DO Cleanup

ACTIVATE MENU MAIN

* Procedures
PROCEDURE Explain
PARAMETERS statel, stateZ, state3, stated, stateb, state6, state7
numstates = PCOUNT()
@ 10,1 TO 12+numstates, 45 DOUBLE
@ 11,3 SAY "This menu covers the following states:"
cntr =1
DO WHILE cntr <= numstates
z = "state"+LTRIM(STR(cntr))
@ 11l+cntr, 6 SAY &z
cntr = cntr + 1
ENDDO
RETURN
*EQP Explain

PROCEDURE Cleanup

@ 10,1 CLEAR TO 19,45
RETURN

*EOP Cleanup

See Also

BAR(), DEFINE BAR, DEFINE MENU, DEFINE PAD, DEFINE POPUP, MENU(),
ON BAR, ON EXIT BAR, ON EXIT MENU, ON EXIT POPUP, ON MENU,

ON PAD, ON POPUP, ON SELECTION BAR, ON SELECTION MENU,

ON SELECTION PAD, ON SELECTION POPUP, PAD(), POPUP(), PROMPT()

ON EXIT POPUP

ON EXIT POPUP executes a specified command when the user moves the cursor off
certain bars in a specified pop-up menu.

Syntax
ON EXIT POPUP <popup name> [<command>]

204 Language Reference

ON EXIT POPUP

NOTE <command> is any command except one that changes the flow of
. control, such as IF, ELSE, DO WHILE, and so on.

Usage

Use EXIT POPUP to execute a specified command when the user moves the cursor off
certain bars in a specified pop-up menu. ON EXIT POPUP associates the command
only with bars that do not have an ON EXIT BAR command assigned to them. ON
EXIT POPUP, in effect, is the default command for every bar that does not have its
own ON EXIT BAR command.

If you omit <command> when you use ON EXIT POPUP, any command previously
assigned for the specified pop-up menu is disabled.

To execute a command when the user selects (highlights) a pop-up menu, use ON
POPUP. To execute a command when the user chooses a pop-up menu, use ON
SELECTION POPUP.

Example

In the following example, the Scale pop-up menu is defined to play a musical scale.
The ON BAR commands execute the Soundoff procedure, the ON SELECTION BAR
commands execute the Frequency procedure, and the single ON EXIT POPUP
command executes the Cleanup procedure for all the bars.

MiddleC = 261.6

ratio 1

DEFINE POPUP Scale FROM 1,1

* Define bars..

DEFINE BAR 1 OF Scale PROMPT "Middle C"

DEFINE BAR 2 OF Scale PROMPT "B"

* Define bar actions..

ON EXIT POPUP Scale DO Cleanup

ON BAR 1 OF Scale DO Soundoff WITH 1

ON SELECTION BAR 1 OF Scale DO Frequency WITH 1

ON BAR 2 OF Scale DO Soundoff WITH 15/16

ON SELECTION BAR 2 OF Scale DO Frequency WITH 15/16

See Also

BAR(), DEFINE BAR, DEFINE MENU, DEFINE PAD, DEFINE POPUP, MENU(),
ON BAR, ON EXIT BAR, ON EXIT MENU, ON EXIT PAD, ON MENU, ON PAD,
ON POPUP, ON SELECTION BAR, ON SELECTION MENU, ON SELECTION
PAD, ON SELECTION POPUP, PAD(), POPUP(), PROMPTY()

Chapter 2, Commands 205

ON MENU

ON MENU

206

ON MENU executes a specified command when the user selects (highlights) certain
pads in a menu.

Syntax
ON MENU <menu name> [<command>]

NOTE <command> is any command except one that changes the flow of
control, such as IF, ELSE, DO WHILE, and so on.

Usage

Use ON MENU to execute a command when the user selects certain pads in a
specified menu. ON MENU associates the command only with pads that do not have
an ON PAD command assigned to them. ON MENU, in effect, is the default ON PAD
command for every pad that does not have its own ON PAD command.

If you omit <command> when you use ON MENU, the command previously assigned
for the specified menu is disabled.

Example

The following example uses ON MENU to display the names of types of files when
the user moves the cursor over the pads. The ON PAD command for padl overrides
that pad’s ON MENU command.

DEFINE MENU Files

* Define pads

DEFINE PAD padl OF Files AT 0,0 PROMPT "Action"
DEFINE PAD pad2 OF Files AT 0,15 PROMPT "Database"
DEFINE PAD pad3 OF Files AT 0,30 PROMPT "Queries"
* Define pad actions

ON MENU Files DO Showfiles

ON PAD padl OF Files ACTIVATE POPUP Setact

See Also

BAR(), DEFINE BAR, DEFINE MENU, DEFINE PAD, DEFINE POPUP, MENU(),
ON BAR, ON EXIT BAR, ON EXIT MENU, ON EXIT PAD, ON EXIT POPUP,
ON PAD, ON POPUP, ON SELECTION BAR, ON SELECTION MENU,

ON SELECTION PAD, ON SELECTION POPUP, PAD(), POPUP(), PROMPT()

Language Reference

ON MOUSE

ON MOUSE

ON MOUSE detects when the user clicks the left mouse button and executes a
command when the button is released.

Syntax
ON MOUSE [<command>]

Usage

Use ON MOUSE to detect when the user clicks the left mouse button and then execute
a command after the button is released.

ON MOUSE is active in the following areas:

m Qutside of the @ GET regions during a READ or EDIT.

m Outside of all pads and pop-up menus, and on the left and right borders of active
user-defined menus and pop-up menus.

m Outside of an active window. ON MOUSE is also active in the window’s border
unless the window contains a BROWSE screen.

ON MOUSE is inactive in the following areas and situations:

m In any screen where the internal dBASE IV menu system is active. A highlight in a
pull-down menu indicates an active menu system.

User-defined menu pads.

On the BROWSE surface.

On the dBASE design surfaces for data, forms, reports, and labels.

In the Applications Generator.

Inside @ GET regions.

Inside user-defined menu pads.

When SET MOUSE is off.

When the user presses the left mouse button in an area unavailable to ON
MOUSE, then moves and releases the left mouse button in an area sensitive to ON
MOUSE.

Example

The following example shows how you use ON MOUSE to execute a procedure when
dBASE IV detects a mouse click.

Chapter 2, Commands 207

ON MOUSE
ON PAD

ON MOUSE DO Chekmous

@2,570 3,10 && Draw mouse box
DECLARE marray[1,5]

marray[1,1] = 2

marray[1,2] =5
marray[1,3] =3
marray[1,4] = 10

marray[1,5] = "First mouse box: 2,5 to 3,10"
Mpause = 'Click mouse in box'

@ 10,10 GET Mpause

READ

PROCEDURE Chekmous
mousrow = MROW() && get the row position of the mouse
mouscol = MCOL() %& get the column position of the mouse
IF mousrow >= marray[1,1] .AND. mousrow <= marray[l,3]

IF mouscol »= marray(1,2] .AND. mouscol <= marray[l,4]

@ 10,10 SAY "You clicked the mouse on the box"

ENDIF
ENDIF
RETURN

See Also
ISMOUSE(), MCOL(), MROW(), SET(), SET MOUSE

ON PAD

208

ON PAD executes a specified command when a menu pad is selected (highlighted).

Syntax

ON PAD <pad name> OF <menu name> [<command>]

or

ON PAD <pad name> OF <menu name> [ACTIVATE POPUP <popup name>]

. NOTE <command> is any command except one that changes the flow of
control, such as IF, ELSE, DO WHILE, and so on.

Usage

Use ON PAD to execute a specified command when the user selects (highlights) a
particular menu pad. The user can select a pad in the following ways:

Language Reference

ON PAD
ON PAGE

m Use the « and — keys to move the cursor to the pad.

m Press the ALT key and the first letter of the pad’s prompt.
s Click on the pad.

s Drag the mouse cursor to the pad.

Typically, ACTIVATE POPUP <popup name> is used with ON PAD to display a pop-
up menu on the screen when the user selects a pad.

To execute a command when the user chooses (by pressing Enter or double-clicking
the mouse) a pad, use ON SELECTION PAD. To execute a command when the user
moves the cursor off a pad, use ON EXIT PAD.

To trigger the same command on all pads, use ON MENU instead of ON PAD.

If you omit <command> when you use ON PAD, the command previously assigned
for the specified menu bar is disabled.

Example
In the following example, dBASE lists all .FRM files when the user selects the p2 pad.

DEFINE MENU Main

DEFINE PAD pl OF Main PROMPT "Help"

DEFINE PAD p2 OF Main PROMPT "Show reports”
ON SELECTION PAD pl OF Main DO Help

ON PAD p2 OF Main DIR *.frm

ACTIVATE MENU Main

See Also

BAR(), DEFINE BAR, DEFINE MENU, DEFINE PAD, DEFINE POPUP, MENU(),
ON BAR, ON EXIT BAR, ON EXIT MENU, ON EXIT PAD, ON EXIT POPUP,
ON MENU, ON PAD, ON POPUP, ON SELECTION BAR, ON SELECTION
MENU, ON SELECTION PAD, ON SELECTION POPUP, PAD(), PADPROMPT(),
POPUP(), PROMPT()

ON PAGE

ON PAGE is the dBASE IV command for triggering an action when the streaming
output passes a particular line on the current page during a ?/?? or EJECT PAGE
command. Typically, ON PAGE is used for handling page breaks with footers and
headers while printing a report.

Syntax
ON PAGE [AT LINE <expN> <command>]

Chapter 2, Commands 209

ON PAGE

Usage

ON PAGE executes the specified command when dBASE IV has passed the line
number designated in the AT LINE clause while executing a 7/?? or EJECT PAGE
command. dBASE IV keeps track of the line number by updating the _plineno system
variable (see Chapter 5, “System Memory Variables”) while printing is in progress.

ON PAGE permits a program to execute a valid command, such as a footer and header
procedure, at the end of each page. The command executed by ON PAGE is known as
the page handler.

ON PAGE with no argument disables the page handler.

To determine the value of <expN> for the AT LINE clause, use this formula: <expN>
= page length - bottom margin - footer height.

The page length is the value of the _plength system variable. The footer height is the
number of lines in the footer, as defined by the footer procedure (see the example
below). The bottom margin is the number of blank lines below the last line of the
footer.

dBASE 1V keeps track of the number of lines in the header, and adjusts the lines of
text on that page accordingly. You must ensure, however, that the number of lines in
the footer do not exceed the lines remaining on the page. If they do, the footer will run
onto the top of the next page.

If you have used the report generator to create a report with headers and footers, the
REPORT FORM command activates the page handler automatically as it prints the
report. You can also use a page handler with other commands that produce printed
output, such as DISPLAY or LIST.

Each of your footer procedures must begin with a ? command to replace the line feed
pre-empted by ON PAGE activation. Be sure to end footer procedures with EJECT
PAGE. You should end procedures that involve report bands with a ?? because ? will
issue a carriage return before the next report band, leaving a blank line at the top of the

page.

210 Language Reference

ON PAGE

Example

Assuming you want six-line top and bottom margins, a program file to print an
inventory might look like this:

* Name..: Invntry.prg

ON PAGE AT LINE 60 DO Page_brk
SET TALK OFF

SET PRINT ON

DO Header && Print first page header.
SCAN ALL
? PART_NO, DESCRIPT, ON_HAND && Print 3 fields.
ENDSCAN
EJECT PAGE && Activate the ON PAGE handler.
DO Footer && Print last page footer.
SET PRINT OFF
ON PAGE && Disable the page handler.
SET TALK ON
RETURN

* EOP: Invntry.prg

PROCEDURE Header

EJECT PAGE && Start on a new page.

? && Print the heading on line two.
? "Current Inventory" STYLE "B", DATE() AT 70

?

? && Start LISTing on the seventh line.
RETURN

* EQP: Header

PROCEDURE Footer

2

? && Print the footer on line 63.
? "CONFIDENTIAL - Do not distribute!"™ STYLE "B"

?? "Page " AT 70, LTRIM(STR(_pageno,4,0))

RETURN

* EOP: Footer

PROCEDURE Page _brk

DO Footer && Print a mid-report footer.
DO Header &% Print a mid-report header.
RETURN

* EOP: Page_brk

See Also

2/77, FUNCTION, PRINTJOB, PROCEDURE, REPORT FORM, SET PRINTER,
_plength, _plineno

Chapter 2, Commands 211

ON POPUP

ON POPUP

ON POPUP executes a specified command when the user selects (highlights) certain
bars in a pop-up menu.

Syntax
ON POPUP <popup name> [<command>]

NOTE <command> is any command except one that changes the flow of
control, such as IF, ELSE, DO WHILE, and so on.

Usage

Use ON POPUP to execute a command when the user selects certain bars in a
specified pop-up menu. ON POPUP associates the command only with bars that do
not have an ON BAR command assigned to them. ON POPUP, in effect, is the default
command for every bar that does not have its own ON BAR command.

If you omit <command> when you use ON POPUP, any command previously
assigned for the specified pop-up menu is disabled.

Example

The following example uses ON POPUP to display help messages to the right of a
pick list.

DEFINE POPUP filetype FROM 5,12

* Define bars

DEFINE BAR 1 OF filetype PROMPT ".DBF"
DEFINE BAR 2 OF filetype PROMPT ".QBE"
DEFINE BAR 3 OF filetype PROMPT ".SCR"
DEFINE BAR 4 QOF filetype PROMPT ".FRM"
DEFINE BAR 5 OF filetype PROMPT ".LBL"
* Define bar actions

ON POPUP filetype DO Showhelp

ON EXIT POPUP filetype DO Closehelp
ACTIVATE POPUP filetype

RETURN

212 Language Reference

ON POPUP
ON READERROR

* Procedures
PROCEDURE Showhelp
DO CASE

CASE PROMPT() = ".DBF"

@ 7,27 SAY "These files store database records"

CASE PROMPT() = ".QBE"
@ 7,27 SAY "These files store query files"

CASE PROMPT() = ".SCR"
@ 7,27 SAY "These files store edit screen formats”

CASE PROMPT() = ".FRM"
@ 7,27 SAY "These files store reports”

CASE PROMPT() = ".LBL"

@ 7,27 SAY "These files store labels"
ENDCASE
RETURN

PROCEDURE Closehelp
@ 7,27 CLEAR TO 7,79
RETURN

See Also

BAR(), BARCOUNT(), BARPROMPT(), DEFINE BAR, DEFINE MENU, DEFINE
PAD, DEFINE POPUP MENU, MENU(), ON BAR, ON EXIT BAR, ON EXIT
MENU, ON EXIT PAD, ON EXIT POPUP, ON MENU, ON PAD, ON SELECTION
BAR, ON SELECTION MENU, ON SELECTION PAD, ON SELECTION POPUP,
PAD(), PADPROMPT(), POPUP(), PROMPT()

ON READERROR

Use ON READERROR for error trapping and recovery during full-screen operations.

Syntax
ON READERROR [<command>]

Chapter 2, Commands 213

ON READERROR
ON SELECTION BAR

Usage

Use ON READERROR to activate a command, program, or procedure after checking
for an error condition. The errors trapped by ON READERROR are invalid dates, a
RANGE specification during data entry that is out of range, or an unmet VALID
<condition>. When your program encounters these, it will execute the command or
program specified in the ON READERROR command line. Specifying ON
READERROR without a command disables the program’s ability to trap errors.

The ON READERROR command is prohibited from using the same commands that
are excluded from user defined functions. See the FUNCTION command for the list of
exclusions.

TIP This command will usually be a DO <command file> to recover from the
error or send a help message to the screen. You can prompt for the correct input
by having the program specify valid entries.

See Also

@, APPEND, BROWSE, CHANGE, EDIT, INSERT, ON ERROR, READ, SET
FORMAT

ON SELECTION BAR

ON SELECTION BAR executes a specified command when the user chooses a bar in
a pop-up menu either by pressing Enter when the cursor is on the bar, or by double-
clicking the bar.

Syntax
ON SELECTION BAR <expN> OF <popup name> [<command>|

2. NOTE <command> is any command except one that changes the flow of
" control, such as IF, ELSE, DO WHILE, and so on.

i

Usage

Use ON SELECTION BAR to execute a specified command when the user chooses a
particular bar in a pop-up menu. The user can choose a bar in the following ways:

m Press Enter.

m Press the first letter of the bar’s prompt.

m Click or double-click the bar.

To execute a command when the user selects (highlights) a bar, use ON BAR. To
execute a command when the user moves the cursor off a bar, use ON EXIT BAR.

214 Language Reference

ON SELECTION BAR
ON SELECTION MENU

If you omit <command> when you use ON SELECTION BAR, the command
previously assigned for the specified menu bar is disabled.

Example

In the following example, dBASE lists all of the database files in the current directory
when the user chooses bar 1.

DEFINE POPUP P1 FROM 1,1 MESSAGE "Files"
DEFINE BAR 1 OF P1 PROMPT "Database Files"
DEFINE BAR 2 OF P1 PROMPT "Query Files"

ON SELECTION BAR 1 OF P1 DIR

ON SELECTION BAR 2 of P1 DIR *.qgbe
ACTIVATE POPUP P1

See Also

BAR(), BARCOUNT(), BARPROMPT(), DEFINE BAR, DEFINE MENU, DEFINE
PAD, DEFINE POPUP, MENU(), ON BAR, ON EXIT BAR, ON EXIT MENU,

ON EXIT PAD, ON EXIT POPUP, ON MENU, ON PAD, ON POPUP, ON
SELECTION MENU, ON SELECTION PAD, ON SELECTION POPUP, PAD(),
POPUP(), PROMPT()

ON SELECTION MENU

ON SELECTION MENU executes a specified command when the user chooses
certain pads in a specified menu either by pressing Enter when the cursor is on the
pad, or by double-clicking the pad.

Syntax
ON SELECTION MENU <menu name> [<command>]

NOTE <command> is any command except one that changes the flow of
control, such as IF, ELSE, DO WHILE, and so on.

Usage

Use ON SELECTION MENU to execute a specified command when the user chooses
certain pads in a specified menu. ON SELECTION MENU associates the command
only with pads that do not have an ON SELECTION PAD command assigned to them.
ON SELECTION MENU, in effect, is the default command for every pad that does
not have its own ON SELECTION PAD command.

If you omit <command> when you use ON SELECTION MENU, any command
previously assigned for the specified menu is disabled.

Chapter 2, Commands 215

ON SELECTION MENU
ON SELECTION PAD

Example

In the following example, only padl is assigned an ON SELECTION PAD command.
The other pads use the ON SELECTION MENU command, executing the Showfiles
procedure when they are chosen. Padl uses ON SELECTION PAD with no
<command> to disable the pad from using the ON SELECTION MENU command.
This pad doesn’t need an ON SELECTION command since it triggers a pop-up menu
when it is selected (highlighted).

DEFINE MENU Files

* Define pads..

DEFINE PAD padl OF Files AT 0,0 PROMPT "Action"
DEFINE PAD pad2 OF Files AT 0,15 PROMPT "Database"
DEFINE PAD pad3 OF Files AT 0,30 PROMPT "Queries"
DEFINE PAD pad4 OF Files AT 0,45 PROMPT "Forms"
DEFINE PAD pad5 OF Files AT 0,60 PROMPT "Reports”
* Define pad actions..

ON SELECTION MENU Files DO Showfiles

ON SELECTION PAD padl OF Files

ON PAD padl OF Files ACTIVATE POPUP Setact

ACTIVATE MENU Files

See Also

BAR(), DEFINE BAR, DEFINE MENU, DEFINE PAD, DEFINE POPUP, MENU(),
ON BAR, ON EXIT BAR, ON EXIT MENU, ON EXIT PAD, ON EXIT POPUP,
ON MENU, ON PAD, ON POPUP, ON SELECTION BAR, ON SELECTION PAD,
ON SELECTION POPUP, PAD(), POPUP(), PROMPT()

ON SELECTION PAD

ON SELECTION PAD executes a specified command when the user chooses a pad in
a menu either by pressing Enter when the cursor is on the pad, or by double-clicking
the pad.

Syntax
ON SELECTION PAD <pad name> OF <menu name> [<command>]

NOTE <command> is any command except one that changes the flow of
control, such as IF, ELSE, DO WHILE, and so on.

216 Language Reference

ON SELECTION PAD
ON SELECTION POPUP

Usage

Use ON SELECTION PAD to execute a specified command when the user chooses a
particular pad in a menu. The user can choose a pad in the following ways:

m Press Enter when the pad is highlighted.
= Click or double-click the pad.

To execute a command when the user selects (highlights) a pad, use ON PAD. To
execute a command when the user moves the cursor off a PAD, use ON EXIT PAD.

To trigger the same command on all pads, use ON SELECTION MENU instead of
ON SELECTION PAD.

If you omit <command> when you use ON SELECTION PAD, the command
previously assigned for the specified menu pad is disabled.

Example
In the following example, dBASE runs a Help program when the user chooses pad p1.

DEFINE MENU Main

DEFINE PAD pl OF Main PROMPT "Help"

DEFINE PAD p2 OF Main PROMPT "Show reports"”
ON SELECTION PAD pl OF Main DO Help

ON PAD p2 OF Main DIR *.frm

ACTIVATE MENU Main

See Also

BAR(), DEFINE BAR, DEFINE MENU, DEFINE PAD, DEFINE POPUP, MENU(),
ON BAR, ON EXIT BAR, ON EXIT MENU, ON EXIT PAD, ON EXIT POPUP,
ON MENU, ON PAD, ON POPUP, ON SELECTION BAR, ON SELECTION
MENU, ON SELECTION POPUP, PAD(), POPUP(), PROMPT()

ON SELECTION POPUP

ON SELECTION POPUP executes a specified command when the user chooses
certain bars in a specified pop-up menu either by pressing Enter when the cursor is on
the bar, or by double-clicking the bar.

Syntax
ON SELECTION POPUP <popup name>/ALL [BLANK] [<command>]

NOTE <command> is any command except one that changes the flow of
control, such as IF, ELSE, DO WHILE, and so on.

Chapter 2, Commands 217

ON SELECTION POPUP

Usage

Use ON SELECTION POPUP to execute a specified command when the user chooses
certain bars in a specified pop-up menu. ON SELECTION POPUP associates the
command only with bars that do not have an ON SELECTION BAR command
assigned to them. ON SELECTION POPUP, in effect, is the default command for
every bar that doesn’t have its own ON SELECTION BAR command.

If you omit <command> when you use ON SELECTION POPUP, any command
previously assigned for the specified pop-up menu is disabled.

If you use ALL, the command you specify applies to all the pop-up menus. BLANK
clears the pop-up menu from the screen before executing the command. The pop-up
menu is redrawn after the command is executed.

To exgcute a command when the user selects (highlights) a bar in a pop-up menu, use
ON POPUP. To execute a command when the user moves the cursor off a pop-up
menu, use ON EXIT POPUP.

Example

The following example uses ON SELECTION POPUP to display the values of each
field in a database file. The field values are displayed when the user chooses a field
name from the list by pressing Enter or clicking the mouse.

DEFINE POPUP Pickfield FROM 0,5 PROMPT STRUCTURE

ON SELECTION POPUP Pickfield DO Showfield WITH PROMPT()
ACTIVE POPUP Pickfield

RETURN

* Procedures
PROCEDURE Showfield
PARAMETERS fieldname
CLEAR
DEFINE POPUP Showfield FROM 3,30 PROMPT FIELD $fieldname
ON SELECTION POPUP Showfield BLANK DO Editrecord ;
WITH fieldname, PROMPT()
ACTIVATE POPUP Showfield
RETURN
*EQP Showfield

PROCEDURE Editrecord

PARAMETERS fieldname, fieldvalue
LOCATE FOR &Fieldname = fieldvalue
EDIT

RETURN

*EQP Editrecord

218 Language Reference

ON SELECTION POPUP

PACK
PARAMETERS

See Also

BAR(), BARCOUNT(), BARPROMPT(), DEFINE BAR, DEFINE MENU, DEFINE
PAD, DEFINE POPUP, MENU(), ON BAR, ON EXIT BAR, ON EXIT MENU, ON
EXIT PAD, ON EXIT POPUP, ON MENU, ON PAD, ON POPUP, ON SELECTION
BAR, ON SELECTION MENU, ON SELECTION PAD, PAD(), PADPROMPT(),
POPUP(), PROMPT()

PACK

PACK removes records that are marked for deletion from the active database file.

Syntax
PACK

Usage
All open index files are automatically REINDEXed.

After you execute a PACK command, the disk space used by the deleted records is
reclaimed when the file is closed. However if the deleted records contained memo
fields, the corresponding .dbt file will not be reduced. In order to reduce the size of the
memo file you must COPY the original database file. The corresponding .dbt memo
file will then be copied and only contain the remaining memo field information.

DIR and LIST/DISPLAY FILES commands do not accurately reflect increases or
decreases in file sizes until the file is closed, if SET AUTOSAVE is OFF.

Special Case

In a multi-user environment, the database file must be in exclusive use before you
issue the PACK command.

See Also

COPY, DELETE, DELETED(), DIR, RECALL, REINDEX, SET AUTOSAVE, SET
EXCLUSIVE, ZAP

PARAMETERS

PARAMETERS assigns local variable names to data items passed from a calling
program. This command receives variables passed by the DO or DEBUG command,
or by a user-defined function.

Syntax
PARAMETERS <parameter list>

Chapter 2, Commands 219

PARAMETERS
PLAY MACRO

Usage

In a program file, PARAMETERS must either be the first executable command, or
must immediately follow a PROCEDURE or FUNCTION command. The parameters
you pass can be any legitimate expressions. The parameter list assigns local variable
names to receive parameters from the sending program’s parameter list. The local
variables created by specifying PARAMETERS are discarded when control is returned
to the calling program.

If you pass more parameters than specified the excess parameters are ignored. If you
pass less parameters than specified the excess variables are set to a logical .F. You can
use the function PCOUNT() to find out how many parameters are actually passed.

You may pass up to 50 parameters from the calling program. There is a limit of 10
literals per PROCEDURE and nine per FUNCTION. User-defined FUNCTIONs
reserve one space for the return value. You will get an error message if you exceed the
number of literals.

If the parameter being passed is a memory variable, its value may be changed. The
change is transferred to the variable in the calling program. If the parameter being
passed is an expression, the value of that expression is stored to a memory variable in
the receiving program.

PARAMETERS treats PUBLIC ARRAYS and PUBLIC memory variables differently.
A PUBLIC ARRAY element passes its value to the subroutine, and the element itself
remains unchanged by the actions of the called subroutines.

A PUBLIC memory variable passes a reference to its actual memory location to the
subroutine, so the memory variable reflects any changes made by the called
subroutines.

If you want an array element to reflect changes made by subroutines, store the value of
the element to a PUBLIC memory variable and pass the memory variable to the
subroutine. Upon return store the changed value of the memory variable to the array
element.

See Also
@, DO, FUNCTION, PCOUNT(), PROCEDURE, SET PROCEDURE, STORE

PLAY MACRO

This command executes macros from the current macro library.

Syntax
PLAY MACRO <macro name>

220 Language Reference

PLAY MACRO

Usage

A macro is a series of k